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A B S T R A C T   

Background: The risk of infection and death by COVID-19 could be associated with a heterogeneous distribution 
at a small area level of environmental, socioeconomic and demographic factors. Our objective was to investigate, 
at a small area level, whether long-term exposure to air pollutants increased the risk of COVID-19 incidence and 
death in Catalonia, Spain, controlling for socioeconomic and demographic factors. 
Methods: We used a mixed longitudinal ecological design with the study population consisting of small areas in 
Catalonia for the period February 25 to May 16, 2020. We estimated Generalized Linear Mixed models in which 
we controlled for a wide range of observed and unobserved confounders as well as spatial and temporal 
dependence. 
Results: We have found that long-term exposure to nitrogen dioxide (NO2) and, to a lesser extent, to coarse 
particles (PM10) have been independent predictors of the spatial spread of COVID-19. For every 1 μm/m3 above 
the mean the risk of a positive test case increased by 2.7% (95% credibility interval, ICr: 0.8%, 4.7%) for NO2 and 
3.0% (95% ICr: -1.4%,7.44%) for PM10. Regions with levels of NO2 exposure in the third and fourth quartile had 
28.8% and 35.7% greater risk of a death, respectively, than regions located in the first two quartiles. 
Conclusion: Although it is possible that there are biological mechanisms that explain, at least partially, the as
sociation between long-term exposure to air pollutants and COVID-19, we hypothesize that the spatial spread of 
COVID-19 in Catalonia is attributed to the different ease with which some people, the hosts of the virus, have 
infected others. That facility depends on the heterogeneous distribution at a small area level of variables such as 
population density, poor housing and the mobility of its residents, for which exposure to pollutants has been a 
surrogate.   

1. - Introduction 

The Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV- 
2) first appeared in the city of Wuhan, China, in December 2019, and 
then spread worldwide (Chen et al., 2020; WHO, 2020). By July 8, 2020, 
210 countries and territories had been affected, 11,801,805 people 
diagnosed and 543,902 have died as a result of Coronavirus disease 
2019 (COVID-19) (ECDC, 2020). 

The main route of transmission for COVID-19 is by the direct or in
direct contact with an infected subject through the small droplets that 
occur when an infected person coughs or sneezes (Domingo et al., 2020). 

It is also transmitted by touching the eyes, nose, or mouth after touching 
contaminated surfaces. Therefore, aerosols can play a role in the trans
mission of COVID-19 (Asadi et al., 2020). People with COVID-19 have 
reported a wide range of symptoms (fever, cough, shortness of breath, 
fatigue, headache, loss of taste or smell, sore throat, congestion, nausea, 
vomiting, and diarrhoea) ranging from mild symptoms to severe illness 
(CDC, 2019). Several studies have already reported that the age and 
underlying diseases, mainly cardiovascular, are the most important risk 
factors for death by COVID-19 (Li X et al., 2020; Onder et al., 2020). 

Both incidence and mortality vary greatly between continents, 
countries and even regions within each country. There have been several 
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factors that could explain the substantial differences in the incidence 
and mortality rates between affected countries and geographic regions, 
including, but not limited to, environmental variables and demographic 
and socioeconomic factors. 

At the end of June 2020 we conducted a search in the online data
bases PubMed, Web of Science, Scopus and Google Scholar, by 
combining the keyword ‘COVID 19′ with the keywords, ‘environment’, 
’(environmental factors)’, ’(air pollution)’, ‘socioeconomic’, ’(socio
economic variables)’, ‘demographic’ or ’(demographic variables)’. After 
excluding the repetitions, as well as preprints (studies that have not yet 
been peer-reviewed), qualitative studies, editorials, opinion and purely 
narrative papers, we were left with 22 studies. Twelve studies evaluated 
the association of COVID-19 with air pollution and 12 with demographic 
and socioeconomic variables (two of them also evaluated air pollution). 
However, of those 22 only 12 (seven of which evaluate air pollution, six 
socioeconomic and demographic variables and one which evaluates 
both) used regression models, that is, adjust the associations by some 
confounders. In fact, and as Bontempi et al. (2020) point out, a 
pandemic is a complex phenomenon, involving many variables and it 
cannot be assessed in a bivariate way. The rest of the studies were either 
purely descriptive (interpretation of bar plots, scatter plots and maps) 
and/or interpreted correlations, without adjusting for any confounder. 

All studies that evaluated the association between the exposure to air 
pollutants (particulate matter, nitrogen dioxide, ozone and air quality 
index) and COVID-19 found positive and statistically significant asso
ciations, even controlling for possible confounders (especially meteo
rological variables and only in two of the studies also demographic and 
socioeconomic factors). In relation to long-term (i.e. chronic) exposure 
to air pollutants (measured as the spatial variation of air pollutants in a 
given geographic area over a relatively long period of time), Fattorini 
and Regoli (2020) (in 71 Italian provinces) and Coccia (2020) (in the 55 
Italian cities he studied) found that exposure to air pollutants was 
significantly associated with an increase in the number of cumulative 
cases of COVID-19. With regard to short-term (i.e. acute) exposure 
(measured as the temporal variation of air pollutants), Xu et al. (2020) 
(in 33 locations in China), Zhu et al. (2020) (in 120 cities in China), 
Jiang et al. (2020) (3 cities in China), Li H et al. (2020) (2 cities in China) 
and Adhikari et al. (2020) (in Queens, New York) found significantly 
positive associations between the short-term exposure to air pollutants 
with newly confirmed cases. Furthermore, as Domingo et al. (2020) 
point out, in a very recent review, the results of most of the studies 
suggest that the long-term exposure to air pollutants might lead to more 
severe and lethal forms of COVID-19. 

Most of the studies evaluating socioeconomic and demographic 
variables (four of the six studies) considered population density (Coccia, 
2020; Ahmadi et al., 2020; Pequeno et al., 2020; and You et al. 2020). 
Three studies evaluated the influence of income (Azar et al., 2020; You 
et al., 2020; and Price-Haywood et al., 2020). You et al. (2020) 
considered the percentage of the population aged 65 or over and the 
ratio of total floor area to the number of residential buildings. Bontempi 
(2020a) considered the role of commercial exchanges, as a proxy for 
social interactions. 

In Spain, the region of Catalonia has been the second most affected 
by the COVID-19 pandemic (the Madrid region being the most affected), 
both by number of cases (63,042 cases, 25% of all cases in Spain, 821.37 
cases per 100,000 inhabitants – 537.17 cases per 100,000 in Spain), and 
by deaths (5675 deaths, 20% of all deaths in Spain, 73.94 deaths per 
100,000 inhabitants – 60.49 deaths per 100,000 in Spain) (Secretaría 
General de Sanidad, 2020; INE, 2020a). The geographical distribution of 
the spread of the pandemic has not been spatially homogeneous in the 
Catalan territory either, and important differences at the small area level 
have been observed. 

Catalonia is mainly an urban region. Sixty percent of the population 
reside in 23 cities with more than 50,000 inhabitants (comprising 6.62% 
of the total Catalan territory) and 52% in 14 cities with more than 
100,000 inhabitants (comprising 4.64% of the territory) (IDESCAT, 

2020). Among these include the second-largest city in Spain, Barcelona, 
and the 36 adjacent municipalities making up the Barcelona Metropol
itan Area, i.e. 41.75% of the population of Catalonia (representing only 
1.97% of the territory). All have a high population density and exhibit 
different levels of urban air pollution whose primary source of emission 
is from road traffic. 

Our hypothesis is that the heterogeneity in the spatial distribution of 
the pandemic could be attributed to the fact that the risk of infection and 
death by COVID-19 could be associated with, on the one hand, a het
erogeneous distribution at a small area level of environmental factors 
and, on the other hand, to different socioeconomic and demographic 
factors in each of those small areas. 

Our objective in this paper was to investigate, at a small area level 
and controlling for socioeconomic and demographic factors, whether 
long-term exposure to air pollutants, such as particulate matter (PM10, 
coarse particles with a diameter of 10 μm or less) and nitrogen dioxide 
(NO2), increased the risk of COVID-19 incidence and death in Catalonia, 
Spain. 

This work presents as novelties, the use of spatio-temporal models to 
evaluate the effects of long-term exposure to air pollutants on the spatial 
spread of COVID-19. In the models we control for a wide range of con
founders, both observed and unobserved, and for spatial and temporal 
dependence. Finally, we have exclusively used open data. 

2. - Methods 

2.1. - Study area and study period 

We used a mixed longitudinal ecological design, in which the 
response variables were observed several times at different points in 
time for each small area involved in the study. 

The study population consisted of small areas of Catalonia: for 
incidence, the Basic Health Area (ABS, for its acronym in Catalan from 
here on) and for mortality the ‘comarca’, an administrative territorial 
division of Catalonia (region, hereinafter). The study period was be
tween February 25 and May 16, 2020. The design was unbalanced, since 
neither the ABSs nor the regions were observed the same number of 
times. 

Catalan health planning defines an ABS as the elementary territorial 
unit through which primary health care services are organized (Atenció 
Primària Girona, 2020). The ABSs are either made up of neighbourhoods 
or districts in urban areas or by one or more municipalities in rural areas. 
Their delimitation is determined by geographical, demographic, social 
and epidemiological factors and, in particular, based on the accessibility 
the population has to services and the efficiency in the organization of 
health resources (Atenció Primària Girona, 2020). Each ABS has a Pri
mary Care Team, consisting of general practitioners, paediatricians, 
dentists, nurses and nursing assistants, social workers and administra
tive support staff. Depending on the size of the ABS, the number of 
municipalities and the dispersion of the population, the ABS will have 
one Primary Care Centre (CAP) and may have more clinics that are 
organically dependent on the CAP (Atenció Primària Girona, 2020). 
Specifically, we considered 372 of the 378 ABSs in Catalonia (because in 
six of the ABSs no positive test was reported), with a population between 
371 and 72,321 inhabitants (mean 20,266 inhabitants, standard devia
tion 13,391, median 18,457 inhabitants, first quartile -Q1- 10,554, third 
quartile -Q3- 27,529). The population density was in the range of 
0.31–34,590.58 inhabitants/km2 (mean 3486.36, standard deviation 
6719.23, median 309.18, Q1 44.83, Q3 3752.54). Of the 178 munici
palities considered, 46 were divided into more than one ABS, 37 of them 
into a maximum of five ABSs, eight between six and 14 ABSs and one, 
(the city of Barcelona) into 67 ABSs (IDESCAT, 2020). 

To avoid the identification of the deceased and to guarantee their 
confidentiality, no cases of mortality are provided at the level of the ABS 
but rather at the ‘region’ level (Open Government, 2020). We had 
mortality data for all 42 regions of Catalonia, with a population between 
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3802 and 2,252,862 inhabitants (mean 176,556 inhabitants, standard 
deviation 376,639, median 50,943 inhabitants, Q1 19,739, Q3 171, 
874). The population density was in the range 0.36–3997. inhab
itants/km2 (mean 170.38, standard deviation 642.44, median 30.63, Q1 
11.16, Q3 83.52) (IDESCAT, 2020). 

2.2. - Measures of the study, data and sources 

2.2.1. Outcome variables 
To evaluate the incidence, we used daily incident positive cases, 

which were those that tested positive on some diagnostic test (PCR or 
fast test) (Open Government, 2020), at the level of the ABS. For mor
tality we used daily deaths obtained from the funeral homes’ reports to 
the Catalan Health Department (Open Government, 2020). These re
ports declare positive cases as well as suspicious ones. Suspicious cases 
corresponded to people who presented symptoms at some point and a 
health professional classified them as a possible case, but they did not 
have a diagnostic test with a positive result. All data were obtained from 
the RSAcovid19 records from the Catalan Health Department (Open 
Government, 2020). 

2.2.2. Air pollutants 
We used long-term exposure to air pollutants, particulate matter 

(PM10) and nitrogen dioxide (NO2) in each of small areas from 2011 to 
2019. 

It is important to note that we evaluated long-term exposure to these 
air pollutants. That is to say, a subject, by virtue of residing in a certain 
small area, has been exposed to an (average) level of various environ
mental variables in the small area where, in our case, they resided at 
least during the period 2011–2019. We were interested in the effects 
that geographical variation of such exposure may have on the spatial 
spread of COVID-19. 

We obtained information on the levels of air pollution for 2011–2019 
from the 144 monitoring stations in the Catalan Network for Pollution 
Control and Prevention (XVPCA) located throughout Catalonia (Dades 
obertes Catalunya, 2020). We predicted the levels of air pollutants to 
which the inhabitants of each ABS and each region had been exposed to 
from 2011 to 2019 using a joint Bayesian model. The dependent vari
ables were PM10 and NO2. As explanatory variables we included air 
pollutants other than the dependent variable (fine particles with a 
diameter of 2.5 μm or less -PM2.5- nitrogen oxide -NO-, sulphur dioxide 
-SO2-, carbon monoxide -CO-, ozone -O3-, benzene -C6H6-, benzopyrene 
-B-, lead, arsenic, nickel, cadmium; in addition to PM10 and NO2 when 
the dependent variable was NO2 and PM10, respectively) and the surface 
of the ABS or the region. In the model we controlled for spatial het
erogeneity and both spatial and temporal dependence. This model 
allowed us to avoid the problems caused by spatial misalignment. If this 
problem is not corrected properly (as we did), there will be a complex 
form of measurement error leading to biased (i.e. asymptotically biased) 
and inconsistent estimates and erroneous standard errors in the esti
mates of the parameters. Further details concerning this can be found in 
Barceló et al. (2016). 

In fact, although PM10 was observed at stations located at only 94 of 
the 372 ABSs and NO2 at 66 of them, the model fit was very good in both 
cases (Figs. A1 and A2 in supplementary material). 

2.2.3. Control variables 
We controlled for socioeconomic and demographic variables in the 

last year (or period) available at the census tract level (the only small 
area below the municipality for which data are provided). In particular: 

Average income per person (in Euros). Average of the years 2015, 
2016 and 2017. Variable observed at the census track level (Source: 
Instituto Nacional de Estadística, INE, 2020b). 

Unemployment rate in 2011 (in percentages). Variable observed at 
the census track level (Source: Spanish Population and Housing Census 
2011, INE, 2011). 

Percentage of population aged 65 and over in 2019. Variable 
observed at the census track level (Source: INE, 2020a). 

Percentage of foreigners in 2019 from countries with medium and 
low human development index according to the United Nations Devel
opment UNDP. United Nations Development Program (2019). Variable 
observed at the census track level (Source: INE, 2020a). 

Poor housing. Percentage of houses with less than 45 m2 of living 
area in 2011. Variable observed at the census track level (Source: 
Spanish Population and Housing Census 2011, INE, 2011). 

Percentage of single person households in 2017. Variable observed at 
the census track level (Source: INE, 2020n). 

Population density in 2019 (in inhabitants/km2). Variable observed 
at both, ABS and region level (Source: INE, 2020a, and Statistical 
Institute of Catalonia, IDESCAT, 2020). 

With the exception of population density, all other variables were 
observed at the census tract level. Using the population of each of the 
census tracts as weights (the source of the total population of the census 
tract and of the population of the census tract by sex was INE (2020a) we 
calculated the weighted average of the values at the census tracts that 
composed the ABS and the region to obtain their value at ABS and region 
levels. 

2.3. - Data analysis 

We specified two generalized linear mixed models (GLMM) with 
variable response from the Poisson family; one for daily incident positive 
cases and the other for daily mortality. 

Conditional to the true risk in the small area (ABS or region) i on day 
t, xit, the cases of the response variable (Yit) occurring in each of the 
small areas on each day was distributed as a Poisson. 

Yit|θit̃Poisson(θitPopulationi)

where θit , is the mathematical expectation of Yit, E(Yit) = θit ; i = 1,…, n; 
t = 1,2, …, 82; where t = 1 corresponded to February 25 and t = 82 to 
May 16, 2020; and Populationi was the population at risk of being a case 
(positive case or death) in the small area i and on day t. 

The link functions of the GLMMs were as follows:- Daily incident 
positive cases  

log(θit)= β0 + β1pollu tan ti +
∑3

k=1
β2kincomeQik +

∑4

k=2
β3kunemploymentQik

+β4aged populationi + β5foreignersi + β6poor hou sin gi

+β7 sin gle personi +
∑4

k=2
β8kdensityQik + β9dummy1i

+ηi + S(ABSi)+ τt
+ϕt ct

τt
+offset(log(Populationi))

Where the subindexes i and t indicated the ABS, and the day, respec
tively; pollutanti denoted the predicted levels of air pollutant (PM10 and 
NO2) in ABS i; incomeQi the average income per person in ABS i (in 
quartiles, taking the fourth quartile as the reference category); unem
ploymentQi the unemployment rate (in quartiles, taking the first quartile 
as the reference category); aged populationi the percentage of population 
aged 65 and over; foreignersi the percentage of foreigners; poor housingi 
percentage of houses with less than 45 m2 of living area in 2011; single 
personi the percentage of single person households; densityQi the popu
lation density (in quartiles, taking the first quartile as the reference 
category); Populationi the population of the ABS i; dummy1i a dummy 
variable that collected the ABS where a possible outlier was located 
(explained below); ηi, S, τt ,ϕt ct 

denoted random effects (explained 
below); and βs were the coefficients of the explanatory and control 
variables (eβ was the relative risk associated with each of them). 

- Daily mortality 
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log(θit)= β0 + β1pollu tan ti + β2incomei +
∑4

k=2
β3kunemploymentQik

+β4aged populationi + β5foreignersi + β6poor hou sin g i

+β7 sin gle person i +
∑4

k=3
β8kdensityQik + β9dummy2 i

+ ηi + S(regioni)+ τt
+offset(log(Populationi))

In addition to considering total deaths, the model for daily deaths 
was stratified by sex.Where the subindexes i and t indicated the region, 
and the day, respectively; pollutanti the air pollutant (PM10, included 
linearly in the model, and NO2, included in quartiles, considering the 
first two as the reference category); incomei the average income per 
person in the region i (included linearly in the model); Populationi the 
population of the region (in the stratified models, the total number of 
men and the total number of women, both in 2019 (INE, 2020a)); 
dummy2i a dummy variable that collected the region where a possible 
outlier was located (explained below). The definition of the rest of the 
parameters, variables, and the random effects is the same as described 
previously. 

In order to assess whether the effect of the exposure to pollutants was 
different along the epidemic curve, the models for daily incident cases 
and daily deaths (total, men and women) were re-estimated including 
the interaction between the pollutant variable and the week of the year 
(from week 9, that of February 25, until week 20, that of May 16, 2020). 

2.3.1. Control of a possible outlier 
When we represented both the number of positive cases and the 

number of deaths per 100,000 inhabitants by ABS and region, respec
tively, we observed the existence of an outlier (see Fig. A3 in supple
mentary material). This outlier corresponded to an ABS in the city of 
Barcelona in which the largest hospital in Catalonia is located. We chose 
to control this outlier, including dummy variables in the models. These 
variables took the value 1 when the ABS, or the region, coincided where 
the outlier was located and 0 otherwise. 

2.3.2. Positive cases 
The number of positive cases did not correspond to the number of 

subjects. The problem being that the Government of Catalonia, although 
it provides the daily data of diagnosed subjects, only publishes them at 
the level of the whole of Catalonia, without disaggregating. Therefore, 
the number of positive cases can only be considered as an estimator of 
the incidence. The measurement error of this estimator, however, was 
not random. If this error were not controlled, the estimators would be 
inconsistent. 

We constructed a new variable, daily number of tests per confirmed 
case, t_c, dividing the daily total number of tests (for all of Catalonia) by 
the daily number of subjects with a confirmed diagnosis (these data were 
obtained from Open Government, 2020). This variable indicated the 
daily number of tests that were performed to detect a subject with a 
confirmed diagnosis of COVID-19 (at the level of Catalonia). During the 
study period, an average of 8.74 tests per person were performed each 
day in Catalonia (standard deviation: 8.62; median 5.5, Q1 3.03, Q3 
10.31). Note, however, that as of mid-April the behaviour of this vari
able ceased to be stationary in mean. That is, the number of tests grew 
faster than the number of diagnosed subjects. Furthermore, the differ
ence in the growth of both variables increased over time (Fig. A4 in 
supplementary material). 

To control the measurement error resulting from using an estimator 
of the incidence and not the incidence by itself, in the model we included 
for daily incident positive cases a random effect indexed in the daily 
number of tests per confirmed case, t_c, ϕt ct

. To control the non- 
stationarity in mean explained above, we interacted this effect with τt, 
another random effect indexed on time (see the model for daily incident 
positive cases). 

2.3.3. Random effects 
We included four random effects in the models. First, ηi, a random 

effect indexed on the small area (ABS in the model for daily incident 
positive cases, and region in the model for daily mortality). This random 
effect was unstructured (independent and identically distributed 
random effects, (iid), and captured individual heterogeneity, that is to 
say, unobserved confounders specific to the small area and invariant in 
time. 

Second, in the model we included ϕt c, a structured random effect 
(random walk of order one, rw1). Following the integrated nested 
Laplace approximations (INLA) approach (Rue et al., 2009, 2017) when, 
as in our case, the random effects are indexed on a continuous variable, 
they can be used as smoothers to model non-linear dependency on 
covariates in the linear predictor. 

We also included τt , a structured random effect (rw1) indexed on 
time, in order to control the temporal dependency (that is, the shape of 
the curve itself). 

Finally, we included the structured random effect S(small area) to 
control spatial dependency. That is to say, the fact that small areas that 
are close in space show more similar incidence and mortality than areas 
that are not close. 

Following the INLA approach, random effects were defined using a 
multivariate Gaussian distribution with a zero mean and precision ma
trix kΣ, where k was a constant and Σ was a matrix that defined the 
dependence structure of the random effects [21,22]. In unstructured 
random effects (iid) Σ was a diagonal matrix of 1s; and in random walk 
random effects Σ was defined assuming that increments (in rw1, Δui =

ut − ut− 1) followed a Gaussian distribution with zero mean and a con
stant precision k (Gómez-Rubio, 2020). 

The spatially structured random effect S was normally distributed 
with zero mean and a Matérn covariance function: 

Cov(S(xi), S(xi’ ))=
σ2

2ν− 1Γ(ν) (κ‖xi − xi’‖)
ν Κν (κ‖xi − xi’‖)

where Κν is the modified Bessel function of the second type and order 
ν > 0. ν is a smoother parameter, σ2 is the variance and κ > 0 is related 
to the range (ρ =

̅̅̅̅̅̅̅
8 ν

√
/κ), the distance to which the spatial correlation is 

close to 0.1 (Lindgren et al., 2011). 

2.3.4. Sensitivity analyses 
We carried out various sensitivity analyses in which we included 

explanatory and control variables linearly and non-linearly (quartiles). 
When we included the variables non-linearly, we tried different refer
ence categories. We tested the interaction between air pollutants and the 
average income per person. In the model for daily incident positive cases 
we included, as an additional control variable, an indicator of the 
number of inhabitants of the city to which the ABS belonged. We esti
mated the models with or without the dummy variables that controlled 
the outlier. We estimated the model both without controlling and con
trolling the measurement error due to the use of the daily number of 
tests per confirmed case. In the latter case, we tested without interacting 
and interacting with the random effect that controlled temporal 
dependence. Also, in this last case, we tried different smoothers (spe
cifically autoregressive of order 1 and random walk of order 2, with 
curves smoother than that of a rw1). 

We compared the models using their predictive accuracy and eval
uated them using the Watanabe-Akaike information criterion (WAIC) 
(Watanabe, 2010) and the Deviance Information Criterion (DIC) (Spie
gelhalteer et al., 2002). 

2.3.5. Maps of risk 
To evaluate the existence of a geographical pattern in the incidence 

of and mortality from COVID-19, we represented the relative risks (RRs), 
estimated in the GLMM for daily incident positive cases and for daily 
mortality, on a map of the region under study (i.e. Catalonia). We 
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represented the maps at two points in time: before and after the peak of 
the pandemic (which occurred in the first week of April). Maps at the 
ABS and at the region levels were obtained from the Department of 
Health, Government of Catalonia (2020) and from the Institut Geogràfic i 
Geològic de Catalunya (2020), respectively. 

We also computed exceedance probabilities which are the proba
bility that the smoothed relative risks were above 1 (Richardson et al., 
2004). Richardson et al. recommend using, as a specific interpretation 
rule, the cut-off 80% (and 20%). In this sense, when the exceedance 
probability is greater than 80% (less than 20%), a reasonable sensitivity 
will be achieved. That is, a large proportion of areas in which an excess 
(or a defect) of risk has been estimated correspond to areas that actually 
have an excess (or a defect) of risk (Richardson et al., 2004). This cut-off 
can be used as a measure of the statistical significance of the smoothed 
risk and, furthermore, to help assess the existence of agglomerations of 
excess cases (i.e. clusters). The exceedance probabilities were also rep
resented on a map of the study area. 

2.3.6. Inference 
Inferences were made following a Bayesian perspective, using the 

INLA approach (Rue et al., 2009, 2017). We used priors that penalize 
complexity (called PC priors). These priors are robust in the sense that 
they do not have an impact on the results and, in addition, they have an 
epidemiological interpretation (Simpson et al., 2017). 

All analyses were carried out using the free software R (version 
4.0.0) (R Core Team, 2020), through the INLA package (Rue et al., 2009, 
2017; R INLA project, 2020). The maps were represented using the 
leaflet package (Cheng et al., 2018). 

3. - Results 

Descriptive results are shown in Tables 1 (bivariate analyses) and A1 
(univariate analyses) (in supplementary material). All variables have 
fairly asymmetric distributions. For this reason, only robust summary 
statistics (median and quartiles) should be interpreted. 

The results of the bivariate analyses show that, in general, the most 
polluted ABSs and regions were those that presented the highest number 
of positive cases and deaths per 100,000 inhabitants, respectively. 
However, note that they grew more or less monotonically as PM10 levels 
did, only when deaths per 100,000 inhabitants were considered 
(Table 1b). In the rest of the cases, the possible relationships between air 
pollutants and the number of positive cases and deaths (both per 
100,000 inhabitants) did not appear to be monotonous. In this sense, the 
highest number of positive cases per 100,000 inhabitants occurred in the 
third quartile of PM10 and NO2 (Table 1a). Note, in particular, the 
possible relationship between NO2 and deaths per 100,000 inhabitants 
at the region level, with an imperfect V-shape where the right wing is 
longer than the left (Table 1b). 

The higher the average income per person in the ABS and in the 
region, the greater the number of positives and deaths per 100,000 in
habitants, respectively. The greater the population density of the ABS or 
the region, the greater the number of positive cases and deaths per 
100,000 inhabitants. The possible relationship between the unemploy
ment rate and the number of positive cases and deaths (both per 100,000 
inhabitants) was nonlinear, with a maximum in the second (number of 
positive cases per 100,000 inhabitants, Table 1a) and in the third 
quartile (deaths per 100,000 inhabitants, Table 1b). Note that, after the 
maximum, the highest number of positive cases was in the first and third 
quartiles (Table 1a) and the highest number of deaths in the second 
quartile (Table 1b). 

In the sensitivity analysis, regarding the functional form of the 
explanatory variables (linear or nonlinear, the latter represented para
metrically, including the variable in quartiles) and the reference cate
gories when the variable was entered non-linearly, the models with a 
better fit (lower WAIC and DIC) corresponded to those specified above. 
The interaction between air pollutants and the average income per 

person was not statistically significant in the two models. In the model 
for daily incident positive cases, the indicator of the number of in
habitants of the city to which the ABS belonged was not statistically 
significant either. Furthermore, both in the interaction and in the indi
cator, the models that included them did not show a better fit. However, 
the models that included the dummy variables to control the outlier, as 
well as those that controlled the measurement error due to the use of the 
daily number of positive cases (in interaction with the random effect 
that controlled temporal dependency) provided a much better adjust
ment (lower WAIC and DIC). Finally, the best smoother for the random 
effect indexed by the number of tests per day (in Catalonia) was the 
random walk of order 1 (rw1). 

In Tables 2 and 3 we show the estimation results of the GLMM 
models with which we specified the association between air pollutants 
and the daily incident positive cases and daily deaths, controlling, in 
both cases, for socioeconomic and demographic variables, unobserved 
confounders and the spatial and the temporal dependency. 

To facilitate the interpretation of the Relative Risks (RR) in the case 
of the variables introduced in the models linearly, we centred these 
variables, subtracting the mean. Furthermore, in Tables 2 and 3, in 
addition to the RR and their credibility intervals at 95% (95% ICr, from 
now on), the probability of the parameter estimator (the log (RR)) as an 
absolute value being more than 0 is also shown. Unlike the p-value in a 
usual environment (i.e. frequentist), this probability allows us to make 
inferences about possible associations. 

For NO2, for every 1 μm/m3 above the mean, the risk of a positive 
result increased by 2.7% (Relative Risk 1.027, 95% ICr: 1.008–1.047). In 
the case of PM10, for every 1 μm/m3 above the mean, the risk of a 
positive result increased by 3.0% (95% ICr: 0.986–1.074) (Table 3). 
However, in the latter case, the association was found only marginally 
significant (i.e. the 95% credibility interval contained the unit, but not 
the 90% credibility interval). 

Associations between the levels of air pollution and the risk of dying 
were found for NO2 (total deaths and deaths of men) and for PM10 (only 
in deaths of men), although in all cases they were only marginally sig
nificant (Table 3). Regions with levels of NO2 exposure in the third 
quartile had 28.8% (95% ICr: 0.872–1.902) (total deaths) and 38.6% 
(95% ICr: 0.915–2.108) (deaths in men) greater risk than the regions 
located in the first two quartiles. The relative risk was even higher in the 
regions located in the fourth quartile, with a 35.7% (95% ICr: 
0.848–2.161) greater risk in total deaths and 44.3% (95% ICr: 
0.899–2.303) in male deaths. For every 1 μm/m3 above the mean for 
PM10, the risk of death in men increased by 12.6% (95% ICr: 
0.925–1.350). 

With regard to the socioeconomic and demographic control vari
ables, with the exception of average income per person and poor 
housing, both in mortality (Table 3), associations were found for both 
the risk of a positive case and of death, although many of them were only 
marginally significant. The higher the population density, the greater 
the percentage of population aged 65 years old and the higher the per
centage of poor housing in the small area (ABS for the three variables, 
region only in the first two), the greater the risk of a positive result and 
death. Conversely, the higher the unemployment rate and the percent
age of foreigners in the small area (both in ABS and in the region), the 
lower the risk of a positive result and death. Note that with respect to the 
most economically favored ABS (quartile 4), those ABSs located in the 
third and in the second quartiles (in this order) had the highest risk of a 
positive result (Table 2) (the average income per person was not asso
ciated with the risk of death). The higher the percentage of single person 
households, the lower the risk of a positive result (Table 2), but the 
higher the risk of death (Table 3). 

At least in terms of risk of death (data on small areas segregated by 
sex are only provided for mortality), sex could be a confounding variable 
of the association of the risk with air pollutants, single person house
holds, and poor housing, since in these cases, the credibility intervals of 
90% and 95% in the stratum of women contained the unit (Table 3). 
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Table 1 
a.- Description of the variables by Basic Health Region (ABS). Catalonia, February 25 - May 16, 2020. b.- Description of the variables by region (comarca). Catalonia, 
February 25 - May 16, 2020.  

Quartiles of PM10 

Variables Q1 Q2 Q3 Q4 
Daily positive cases     
Mean (standard deviation) 109.8 (97.8) 109.3 (82.0) 160.9 (92.1) 172.4 (71.4) 
Median (Q1-Q3) 86.0 (29–166.0) 92.4 (39.0–155.8) 147.0 (98.0–207.0) 162.0 (118.0–229.0) 
Min-Max 2.0–376.0 6.0–426.0 19.0–600.0 9.0–325.0 
Daily cases/100,000 h.     
Mean (standard deviation) 1050.0 (2570.0) 980.0 (1340.0) 1200.0 (1060.0) 1120.0 (1030.0) 
Median (Q1-Q3) 530.0 (170.0–950.0) 560.0 (260.0-1120.0) 850.0 (480.0-1640.0) 800.0 (550.0-1240.0) 
Min-Max 30.0–23,180.0 40.0–8800 60.0–4960.0 60.0–6230.0 
Quartiles of NO2  

Variables Q1 Q2 Q3 Q4 
Daily positive cases     
Mean (standard deviation) 65.5 (74.1) 119.9 (76.5) 175.6 (80.6) 188.7 (79.6) 
Median (Q1-Q3) 40.5 (16.3–105.8) 107.0 (67–151.0) 179.0 (110.0–234.0) 171.0 (134.0–233.0) 
Min-Max 2.0–426.0 14.0–376.0 38.0–376.0 63.0–600.0 
Daily cases/100,000 h.     
Mean (standard deviation) 910.0 (2500.0) 1080.0 (1540.0) 1360.0 (1540.0) 1000.00 (710.0) 
Median (Q1-Q3) 370.0 (150.0–840.0) 580.0 (280.0-1140.0) 930.0 (680.0-1700.0) 800.0 (550.0-1150.0) 
Min-Max 30.0–23,180.0 80.0–8800.0 170.0–6230.0 220.0–3750.0  

Quartiles of average income per person  
Variables Q1 Q2 Q3 Q4 
Daily positive cases     
Mean (standard deviation) 115.76 (81.41) 118.54 (87.22) 132.14 (88.78) 184.66 (89.64) 
Median (Q1-Q3) 113.00 (40.25–168.50) 110.00 (45.00–192.00) 122.00 (67.50–172.00) 183.00 (125.50–240.50) 
Min-Max 2.00–326.00 3.00–349.00 7.00–426.00 30.00–600.00 
Daily cases/100,000 h.     
Mean (standard deviation) 830.0 (930.0) 1097.0 (1460.0) 1110.0 (1200.0) 1310.0 (2470.0) 
Median (Q1-Q3) 580.0 (240.0–940.0) 620.0 (290.0-1150.0) 700.0 (480.0-1240.0) 830.0 (510.0-1300.0) 
Min-Max 38.0–4955.0 30.0–8800.00 120.0–7710.0 130.0–23,180.0  

Quartiles of unemployment  
Variables Q1 Q2 Q3 Q4 
Daily positive cases     
Mean (standard deviation) 123.41 (97.9) 152.9 (96.1) 148.8 (87.1) 125.9 (78.5) 
Median (Q1-Q3) 105.0 (35.0–210.5) 144.0 (83.5–211.0) 137.0 (83.8–202.0) 114.0 (68–2) 
Min-Max 3.0–426.0 6.0–600.0 2.0–376.0 2.0–349.0 
Daily cases/100,000 h.     
Mean (standard deviation) 1210.0 (2250.0) 1360.0 (1500.0) 950.0 (1040.0) 830.0 (790.0) 
Median (Q1-Q3) 680.0 (350.0-1210) 810.0 (500.0-1680.0) 670.0 (400.0-1110.0) 600.0 (310.0-1000.0) 
Min-Max 440.0–23,180.0 70.0–8800.0 40.0–7460.0 30.0–4270.0  

Quartiles of population density 
Variables Q1 Q2 Q3 Q4 
Daily positive cases     
Mean (standard deviation) 61.3 (57.4) 135.1 (78.6) 163.8 (100.3) 190.8 (64.9) 
Median (Q1-Q3) 39.0 (16.0–99.5) 136.0 (76–185.0) 140.0 (83.8–220.3) 196.0 (144.0–236.0) 
Min-Max 2.0–279.0 6.0–426.0 23.0–600.0 19.0–326.0 
Daily cases/100,000 h.     
Mean (standard deviation) 1100.0 (2560.0) 1050.0 (1320.0) 1040.0 1170.0) 1160.0 (990.0) 
Median (Q1-Q3) 400.0 (140.0-1180.0) 570.0 (380.0–990.0) 730.0 (480.0-1120.0) 850.0 (610.0-1260.0) 
Min-Max 30.0–23,180.0 50.0–8800.0 120.0–7710.0 60.0–6230.0  

Quartiles of PM10 

Variables Q1 Q2 Q3 Q4 
Daily deaths     
Mean (standard deviation) 24.3 (38.9) 35.0 (52.3) 140.4 (184.8) 938.6 (1416.3) 
Median (Q1-Q3) 11.5 (1.3–25.5) 16.0 (6–3) 75.0 (15.0–166.0) 402.0 (157.0-1303.8) 
Min-Max 1.0–117.0 1.0–179.0 5.0–520.0 96.0–4750.0 
Deaths/100,000 habs.     
Mean (standard deviation) 89.0 (107.2) 48.1 (20.3) 108.9 (110.9) 158.8 (59.0) 
Median (Q1-Q3) 30.6 (12.5–175.8) 43.8 (26.3–70.0) 61.8 (40.9–155.8) 148.3 (111.8–207.3) 
Min-Max 4.6–296.6 22.3–79.8 22.2–408.4 86.8–277.7 
Quartiles of NO2  

Variables Q1 Q2 Q3 Q4 
Daily deaths     
Mean (standard deviation) 83.3 (97.4) 40.7 (64.2) 33.4 (40.2) 997.7 (1386.4) 
Median (Q1-Q3) 76.0 (10.0–106.5) 16.0 (6.0–24.0) 22.5 (5.0–44.3) 504.0 (201.3-1303.8) 
Min-Max 1.0–316.0 1.0–179.0 1.0–129.0 148.0–4750.0 
Deaths/100,000 habs.     
Mean (standard deviation) 107.2 (96.5) 53.9 (40.0) 62.7 (51.3) 184.2 (95.5) 
Median (Q1-Q3) 70.0 (33.7–183.8) 43.6 (22.3–79.8) 52.6 (25.8–71.9) 153.9 (117.3–227.6) 
Min-Max 10.8–296.6 4.6–130.0 17.4–191.1 86.8–408.4  

Quartiles of average income per person  
Variables Q1 Q2 Q3 Q4 
Daily deaths     

(continued on next page) 
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The association between the air pollutants and the risk of a positive 
case and of a death throughout the evolution of the pandemic are shown 
in Figs. 1 and 2, respectively. We observed that RRs increased up to a few 
weeks after the lockdown and then decreased (albeit oscillating). For 
mortality this week was from March 23 to 29 (third week after lock
down) (Fig. 2 right) and for positive results it was somewhat earlier, the 
week from March 16 to 22 (second week after lockdown) for PM10 and 
the week from March 9 to 15 (the week after lockdown) for NO2 (Fig. 2 
left). It should be noted, however, that the credibility intervals of the 
RRs overlapped (that is, we could not reject the null hypothesis that the 
RRs were the same) and that there were few statistically significant RRs 
(especially for PM10 both in daily incident positive cases and in deaths) 
and most of them were only marginally significant (especially in NO2 in 
deaths) (Fig. 2). 

The maps of the smoothed relative risks of the study area and of the 
exceedance probabilities are shown in Fig. 3 (positive result) and 4 
(death). The smoothed relative risks should be interpreted in relation to 
the smoothed RR average throughout Catalonia in the period considered 
(before and after the peak of the pandemic). Both the maps of smoothed 
relative risk of a positive result (Fig. 3) and those of a death (Fig. 4), 
closely resemble the maps of the exceedance probabilities (Fig. A5a and 
A5b in supplementary material, respectively). Most of the small areas 
(ABSs or regions), in which we estimated either an excess (RR > 1, ex
ceedance probability>80%) or a risk defect (RR < 1, exceedance 
probability<20%) corresponded, effectively, with areas with an excess 
or a defect of risk, respectively. In the maps of the smoothed relative 
risks of a positive result, the same geographic pattern was observed both 
before and after the peak of the pandemic (Fig. 3). It is observed how the 
largest smoothed RRs were concentrated in three parallel axes from 
north-south direction, one on the coast, another in the interior and a 
third on the western limit of Catalonia. The first two coincided with 
densely populated ABSs and large road and rail infrastructures. The 
third, however, was made up of ABSs with very little population, sug
gesting that smoothed RRs could be very unstable. In the maps of the 
smoothed relative risks of death (Fig. 4 and Fig. A5b in supplementary 
material), the highest (and statistically significant, i.e. exceedance 
probabilities>80% or <20%) smoothed RRs are observed in an area in 
the center of Catalonia, with the lower limit in the city of Barcelona 
(Fig. A5b in supplemental material). 

In Fig. A6 (in supplementary material) we show those ABSs and re
gions with statistically significant variation in the smoothed Relative 
Risks before and after the peak of the pandemic (first week of April 
2020). Very few ABSs, and even fewer regions, varied their smoothed 
RR. Specifically, 18 ABS (out of a total of 372) went from having a 
smoothed RR of a positive result greater than unity to a RR less than 
unity, and most of them were ABS from the city of Barcelona (11 of 18). 
Only five went from having a smoothed RR less than unity to one greater 
than unity and only four regions out of a total of 42 went from having a 
smoothed RR of death greater than one to another less than one. All of 
these regions had very low population densities (Alt Camp, Noguera, 
Urgell and Vall d’Aran). No region was found in the opposite case. 

4. - Discussion 

We have found that long-term exposure to nitrogen dioxide (NO2) 
and, to a lesser extent, to coarse particles (PM10), have been independent 
predictors of the spatial spread of COVID-19 in Catalonia, from late 
February to mid-May 2020. 

As we have found, significantly positive associations between air 
pollutants and COVID-19 cases were found by all studies that, in the 
systematic review we carried out, evaluated the association with air 
pollutants. The problem is that not all of them are totally comparable. 
Only Coccia (2020) and Fattorini and Regoli (2020) evaluated, as we 
did, long-term exposure to air pollutants. However, the dependent 
variable used by both studies (number of cumulative cases) differed 
from ours. In addition, as a difference with respect to our study, Fattorini 
and Regoli (2020) did not adjust for confounders other than air pollut
ants, while Coccia (2020) adjusted for meteorological variables (in 
addition to socioeconomic variables). Both studies evaluated the expo
sure to ozone and Fatorini et al. (2020) also evaluated the exposure to 
PM2.5. 

Short-term exposure to air pollutants was also found to be statisti
cally significantly associated with an increase in new daily cases of 
COVID-19, in all cases controlling for meteorological variables (Xu et al., 
2020, who evaluated the Air Quality Index; Zhu et al., 2020, PM10 and 
NO2 - in addition to PM2.5 and O3-; H Li et al., 2020, PM10 and NO2 -in 
addition to PM2.5 and the Air Quality Index-; Jiang et al., 2020, PM2.5). 
However, Jiang et al. (2020) found a negative association with 

Table 1 (continued ) 

Quartiles of PM10 

Mean (standard deviation) 22.1 (23.0) 59.3 (63.08) 157.2 (193.6) 898.8 (1440.4) 
Median (Q1-Q3) 15.0 (4.5–33.5) 27.5 (8.3–109.0) 93.0 (11.0–316.0) 350.5 (103.3-1303.8) 
Min-Max 2.0–75.0 5.0–179.0 1.0–520.0 1.0–4750.0 
Deaths/100,000 habs.     
Mean (standard deviation) 39.9 (26.5) 58.8 (26.6) 142.9 (122.7) 150.7 (72.1) 
Median (Q1-Q3) 29.7 (22.3–49.9) 54.2 (37.2–76.8) 118.6 (43.8–206.1) 153.9 (100.3–196.1) 
Min-Max 17.4–102.2 26.5–110.7 43.8–206.1 26.3–277.7  

Quartiles of unemployment  
Variables Q1 Q2 Q3 Q4 
Daily deaths     
Mean (standard deviation) 19.1 (29.5) 551.7 (1479.2) 379.6 (507.0) 164.4 (183.8) 
Median (Q1-Q3) 6.0 (2.5–25.0) 21.0 (8.0–238.8) 129.0 (19.0–550.0) 86.0 (31.5–253.5) 
Min-Max 1.0–93.0 1.0–4750.0 1.0–1390.0 15.0–520.0 
Deaths/100,000 habs.     
Mean (standard deviation) 64.1 (54.4) 105.3 (78.9) 129.3 (92.5) 97.4 (114.6) 
Median (Q1-Q3) 43.8 (19.8–116.1) 78.4 (35.9–194.9) 112.1 (61.8–174.0) 64.9 (29.7–112.7) 
Min-Max 10.8–161.5 26.3–210.8 4.6–296.6 22.2–408.4  

Quartiles of population density 
Variables Q1 Q2 Q3 Q4 
Daily deaths     
Mean (standard deviation) 36.1 (72.4) 197.9 (199.3) 210.0 (173.9) 1622.8 (1820.4) 
Median (Q1-Q3) 15.0 (5.3–22.8) 129.0 (34.0–477.0) 163.0 (90.8–297.3) 1275.0 (349.5-3070.0) 
Min-Max 1.0–316.0 33.0.0–488.0 75.0–550.0 179.0–4750.0 
Deaths/100,000 habs.     
Mean (standard deviation) 69.7 (74.3) 143.3 (144.0) 115.4 (34.7) 145.8 (52.5) 
Median (Q1-Q3) 42.2 (26.4–77.4) 86.8 (41.8–277.7) 112.6 (97.1–147.4) 152.0 (96.1–192.4) 
Min-Max 4.6–296.0 24.3–408.4 56.3–155.8 73.5–210.8  
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short-term exposure to PM10. This discrepancy could be attributed, in 
addition to the different study population, to the fact that Zhu et al. 
(2020) allowed, as in our case, non-linear relationships (approximated 
in a non-parametric way through GAM models) between the pollutants 
and the new daily cases of COVID-19. Secondarily, part of the discrep
ancy could also be due to the probability family used for the response 
variable (Gaussian in Zhu et al., 2020; and in X Li et al., 2020; Poisson in 
Jiang et al., 2020). Adhikari et al. (2020), who evaluated the influence 
between meteorological variables and air pollutants on the incidence 
and mortality from COVID-19, found that, among pollutants, daily 
maximum 8-h ozone concentrations were significantly and positively 
associated with new confirmed cases related to COVID-19 (although not 
so PM2.5). However, neither meteorological variables nor air pollutants 
showed significant associations with deaths related to COVID-19. 

All studies evaluating the association between population density 
and COVID-19, found, as we did, that increases in population density 
were associated with increased COVID-19 morbidity and mortality. 
Although they differ in the study population (55 Italian cities in Coccia, 
2020; Iran in Ahmadi et al., 2020; the 27 state capital cities of Brazil in 
Pequeno et al., 2020; and the 13 districts of Wuhan, China in You et al., 
2020), in the response variable (number of cumulative cases (Coccia, 
2020; Pequeno et al., 2020; You et al., 2020-; infection rate - Ahmadi 
et al., 2020-: and deaths – Coccia, 2020-), in the variables they 

controlled for (meteorological – Coccia, 2020; Ahmadi et al., 2020; 
Pequeno et al., 2020-; air pollutants – Coccia, 2020-; and socioeconomic 
variables - Pequeno et al., 2020; You et al., 2020-) and in the statistical 
methods used (linear regression – Coccia, 2020; Ahmadi et al., 2020-, 
GLMM with a Poisson link - Pequeno et al., 2020-, and spatial regression 
with a Gaussian response variable, i.e. linear model - You et al., 2020). 

Only three studies evaluated the influence of income. Unlike us, Azar 
et al. (2020) and You et al. (2020), found that the most economically 
favored areas show less morbidity from COVID-19. You et al. (2020) 
found that increasing GDP per unit of land area (13 districts of the city of 
Wuhan, China) was associated with a decreased COVID-19 morbidity 
rate. Azar et al. (2020), whose study population consisted of a cohort of 
individual patients residing in 21 counties from Northern California, 
USA (ten of them in San Francisco Bay), found that COVID-19 positive 
patients residing in ZIP codes within the third and fourth quartiles of 
income were less likely to be admitted to hospital than those residing in 
the bottom ZIP code quartile. However, Price-Haywood et al. (2020), 
who also used an individual data cohort from the Ochsner Medical 
Centre, New Orleans, Louisiana, USA, found that black race was not 
associated with higher in-hospital mortality than white race, after 
adjustment for differences in sociodemographic and clinical character
istics on admission. 

However, we have important differences with respect to Azar et al. 
(2020) and You et al. (2020). Firstly, the dependent variable differed 
from ours, the COVID-19 morbidity rate (number of cumulative cases 
divided by the population of the district) in You et al. (2020) and hos
pital admissions of confirmed COVID-19 patients in Azar et al. (2020). 
While we, as You et al., used an ecological design, Azar et al. used a 
cohort of subjects. Azar et al. did not control for the population of the 
ZIP code where the patient resided. Finally, neither study controlled for 
environmental pollutants or for unobserved confounders, as we did. 
However, some similarities to our work with that of You et al. should be 
noted. Both their study and ours included other socioeconomic contex
tual variables such as the percentage of the population in the area aged 
65 or over or an indicator of poor housing. But, undoubtedly, the main 
similarity with You et al., is that, like us, they controlled for spatial 
dependence (not so in Azar et al.). 

You et al. (2020), as in our case, found that both the percentage of 
the population aged 65 or over and the ratio of total floor area to the 
number of residential buildings (indicator of poor housing) were risk 
factors of morbidity due to COVID-19. 

None of the studies reviewed considered the unemployment rate, the 
percentage of foreigners or of single person households in the area. 

The Instituto de Salud Carlos III (Ministry of Health, Government of 
Spain) (2020) has already carried out two rounds of the National Study of 
sero-Epidemiology of SARS-CoV-2 Infection in Spain (ENE-Covid). 
ENE-Covid is a large population-based sero-epidemiological longitudi
nal study, whose objectives are to estimate the prevalence of SARS-Cov2 
infection in Spain by determining antibodies against the virus and 
evaluating its temporal evolution. The estimated prevalence of IgG an
tibodies against SARS-Cov-2 in Spain is 5.2% (95% CI:4.9%–5.5%) 
(5.0%; 95% CI: 4.7%–5.4%, in the first round). When stratified by 
employment situation, the highest prevalence is presented by retirees 
(6.0%, 95% CI:5.3%–6.7%), followed by active workers (5.7%, 95% 
CI:5.5.2%–6.2%). The lowest prevalence, after those who are dedicated 
to charitable activities (2.7%, 95% CI:0.6%–10.8%), is presented by the 
unemployed (3.2%, 95% CI: 2.5%–4.0%; men 3.8%, 95% CI: 2.8%– 
5.0%; women 2.9%, 95% CI:2.1%–3.9%). 

These results are in line with ours. The higher the percentage of 
unemployment the small area (ABS or region) has, the less positive re
sults and fewer deaths from COVID-19 it presented. Although it is true 
that the information on the unemployment rate referred to 2011 (the 
worst year of the Great Recession in Spain) and that, today, the per
centages are much lower, the spatial distribution of the rate is practically 
identical (that is, those areas with lower rates continue to have lower 
rates and vice versa). 

Table 2 
- Association between air pollutants, demographic and socioeconomic variables 
and daily incident positive cases. Basic Health Areas (ABS) of Catalonia, 
February 25 - May 16, 2020.  

RR (95% credibility interval) Prob(|log(RR)|)>
0 

Variables   
PM10 1.030 

(0.986–1.074) 
0.907 

NO2 1.027 
(1.008–1.047) 

0.997 

Average income per person [Quartile 
4]   

Quartile 1 1.016 
(0.694–1.485) 

0.530 

Quartile 2 1.264 
(0.921–1.735) 

0.926 

Quartile 3 1.412 
(1.062–1.876) 

0.991 

Unemployment rate [Quartile 1]   
Quartile 2 1.005 

(0.765–1.321) 
0.514 

Quartile 3 0.654 
(0.481–0.889) 

0.997 

Quartile 4 0.642 
(0.439–0.939) 

0.989 

Population density [Quartile 1]   
Quartile 2 1.393 

(1.013–1.914) 
0.979 

Quartile 3 1.603 
(1.154–2.226) 

0.998 

Quartile 4 1.923 
(1.297–2.850) 

0.999 

Population aged 65 or over 1.019 
(0.986–1.053) 

0.902 

Foreigners 0.987 
(0.967–1.006) 

0.911 

Poor housing 1.025 
(0.995–1.056) 

0.998 

Single person households 0.969 
(0.948–0.991) 

0.997 

NOTES. 
Adjusted by the dummy variable to control the outlier, by the number of tests per 
day, by individual heterogeneity (at the Basic Health Area level), by spatial 
dependence and by temporal dependence. 
Reference category in square brackets. 
Prob(abs(log(RR))>0) higher than 0.95. Prob(abs(log(RR))>0) higher than 
0.90. 
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None of the studies reviewed evaluated the influence of the per
centage of foreigners. Our results, however, are in line with those we 
found for the average income. The higher the percentage in a certain 
small area, the lower the income of that area and, therefore, the lower 
incidence and mortality from COVID-19. 

Nor did any study evaluate the percentage of single person house
holds in the small area. Our findings, although contrary in positive re
sults and deaths, could be explained by Fig. A7 (in supplementary 
material). When considering ABSs (positive results), that is the general 
population, single person households are inhabited by high-income 
people. However, when the region (deaths), that is the elderly popula
tion, is used as a small area, single person households are inhabited by 
low-income people. Thus, the RRs for this variable were in line with the 
RR for income. 

It has been argued that there could be potential biological mecha
nisms that may explain the association between air pollutants and res
piratory viral infections, including influenza, pneumonia, and SARS 

(Ciencewicki and Jaspers, 2007). Wu et al. (2020), in a very recent study 
evaluating the effects of long-term average exposure to fine particulate 
matter (PM2.5) on the risk of COVID-19 death in the United States at the 
small area level (3087 counties), point out that exposure to PM2.5 
adversely affects the respiratory and cardiovascular systems, increasing 
mortality risk. Furthermore, exposure exacerbates the severity of 
COVID-19 infection symptoms and worsens the prognosis of COVID-19 
patients (Wu et al., 2020). 

Although we do not rule out that these mechanisms could partially 
explain our findings, we are more inclined to suppose that, in our work, 
air pollutants have actually been surrogates of another variable, the 
mobility of residents in the small area (ABS or region). There are several 
pieces of evidence that support this. First, that NO2 was the pollutant 
that we found statistically significantly associated in the two small areas 
(that is, for a positive case result and for death). PM10 was not found 
statistically significant when we considered the region (that is, deaths) 
and, in addition, in this case NO2 was found only marginally significant. 

Table 3 
- Association between air pollutants, demographic and socioeconomic variables and daily deaths. Regions (comarcas) of Catalonia, February 25 - May 16, 2020.   

Deaths (males and females) Deaths males Deaths females 

RR (95%CrInt) Prob(|log(RR)|)>
0 

RR (95%CrInt) Prob(|log(RR)|)>
0 

RR (95%CrInt) Prob(|log(RR)|)>
0 

Variables       
PM10 1.038 (0.870–1.228) 0.672 1.126 (0.925–1.350) 0.903 1.042 (0.842–1.276) 0.663 
NO2 [Quartile 1 and Quartile 2]       
Quartile 3 1.288 (0.872–1.902) 0.901 1.386 (0.915–2.108) 0.939 1.114 (0.704–1.757) 0.682 
Quartile 4 1.357 (0.848–2.161) 0.903 1.443 (0.899–2.303) 0.938 1.300 (0.767–2.180) 0.845 
Average income per person 0.999 (0.991–1.001) 0.817 0.999 (0.991–1.001) 0.872 0.999 (0.991–1.001) 0.517 
Unemployment rate [Quartile 1]       
Quartile 2 1.333 (0.764–2.318) 0.849 1.244 (0.681–2.262) 0.766 1.352 (0.722–2.540) 0.831 
Quartile 3 0.736 (0.448–1.219) 0.910 0.757 (0.448–1.292) 0.855 0.669 (0.378–1.199) 0.917 
Quartile 4 0.500 (0.308–0.808) 0.997 0.537 (0.320–0.892) 0.991 0.526 (0.290–0.936) 0.985 
Population density [Quartiles 1 and 2]       
Quartile 3 1217 (0.718–1.716) 0.908 1.183 (0.892–1.474) 0.908 1163 (0.843–1.483) 0.900 
Quartile 4 1.520 (1.013–2.027) 0.978 1.436 (0.949–1.923) 0.947 1.742 (1.041–2.443) 0.978 
Population aged 65 or over 1.018 (0.943–1.101) 0.920 1.027 (0.941–1.122) 0.676 1.001 (0.909–1.102) 0.499 
Foreigners 0.895 (0.845–0.949) 0.999 0.889 (0.837–0.945) 0.999 0.891 (0.841–0.948) 0.999 
Poor housing 1.169 (0.745–1.844) 0.753 1.197 (0.743–1.976) 0.766 1.097 (0.667–1.807) 0.644 
Single person households 1.036 (0.981–1.093) 0.901 1.053 (0.992–1.117) 0.945 1.005 (0.938–1.075) 0.564 

NOTES. 
Adjusted by the dummy variable to control the outlier, by individual heterogeneity (at the region level), by spatial dependence and by temporal dependence. 
95%CrInt 95%: Credibility interval. Reference category in square brackets. 
Prob(abs(log(RR))>0) higher than 0.95. Prob(abs(log(RR))>0) higher than 0.90. 

Fig. 1. Association between the long-term exposure to air pollutants and the risk of a positive case throughout the evolution of the pandemic. Relative 
risks and 95% credibility intervals. Catalonia, February 25 - May 16, 2020. The start of the lockdown in Spain (March 14, 2020) is indicated by the broken red 
line. The week of February 24 to March 1 there were almost no tests, so the 95% credibility intervals are extremely wide. 
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This suggests that the effects of exposure to air pollutants that we found 
were related to urban traffic. In fact, in the city of Barcelona, while 60% 
of NO2 originates from traffic, this origin is only 21% for PM10 (Barce
lona City Council, 2020). Conversely, while 71% of PM10 is generated 
outside the municipality, only 13% of NO2 is generated outside (Bar
celona City Council, 2020). It is not unreasonable to suppose that these 
figures can be extrapolated to the entire Barcelona Metropolitan Area, 
which comprises 41.75% of the total population of Catalonia. Residing 
in an area with significant urban traffic (i.e. with high long-term expo
sure to the pollutants generated by it, especially NO2) means residing in 
an area with greater mobility and, therefore, a higher risk of contagion. 

On the other hand, the fact that we found that sex has been a con
founding variable of the association between exposure to air pollutants 
and the risk of dying from COVID-19, contributes to this first evidence. 
Deaths, in both men and women, occurred mainly in the elderly popu
lation. However, elderly women in this age group are much less mobile 

than men (for whom statistically significant relationships were found). 
This evidence can also be confirmed by the fact that, after an increase 

in RRs up to one to three weeks after the lockdown (the incubation time, 
first, and worsening for the seriously ill and eventual death, later) the 
RRs associated with exposure to air pollutants barely varied (credibility 
intervals overlapped), even though exposure to air pollutants was sub
stantially reduced. The same phenomenon could be behind the finding 
that the smoothed RRs were very similar before and after the peak of the 
pandemic (the first week of April). 

The second piece of evidence is provided by the effects the socio
economic variables have on the risk of a positive outcome and death. In 
the most economically favored areas (with more average income per 
person, lower percentage of foreigners from low- and middle-income 
countries, and a lower unemployment rate) mainly people with 
middle-high incomes reside there. In the period that we have analyzed, 
these people have been mobile very little. During the confinement, they 

Fig. 2. - Association between the long-term exposure to air pollutants and the risk of a death throughout the evolution of the pandemic. Relative risks and 
95% credibility intervals. Catalonia, February 25 - May 16, 2020. The start of the lockdown in Spain (March 14, 2020) is indicated by the broken red line. The 
week of February 24 to March 1 there were no deaths. 

Fig. 3. Maps of the smoothed relative risks of a positive case in the Basic Health Areas (ABS) of Catalonia. February 25 - May 16, 2020. Left. Before the peak 
of the pandemic (which occurred in the first week of April). Right. After the peak of the pandemic (which occurred in the first week of April) 
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have stayed at home, teleworked, and those who had to go anywhere 
have done so with their own vehicles. Residents in the most economi
cally disadvantaged areas have also been mobile very little. Most of 
those who were working have lost their jobs due to the lockdown and the 
subsequent closure of economic activity. However, residents in the in
termediate areas (those located in quartiles 2 and 3 of average income 
per person) have been the most mobile. They had to go to work (at least 
since the restrictions on work in non-essential activities were lifted after 
Easter in the second week of April) and they commuted, mainly, by 
public transport. 

High mobility, and therefore a greater possibility of contact, has been 
found to be associated with a higher spread of the disease (Ahmadi et al., 
2020; Pequeno et al., 2020). 

Another argument in favor of our hypothesis could be drawn from 
the discussion about the route of transmission of the virus. Some authors 
have suggested that the rapid spread of the SARS-CoV-2 could be 
explained not only by person-to-person transmission, but also by air 
pollution-to-human transmission (ie airborne transmission) (Frontera 
et al., 2020; Hadei et al., 2020; Morawska and Cao, 2020). Coccia 
(2020), even, has suggested that the transmission dynamics of 
COVID-19 could be due to air pollution-to-human transmission, rather 
than the direct human-to-human transmission (Domingo et al., 2020). 
Bontempi (2020b), however, argues that it is not possible to conclude 
that COVID-19 diffusion mechanism also occurs through the air, by 
using PM10 as a carrier. In particular, she showed that Piedmont cities, 
presenting lower detected infections cases in comparison to Brescia and 
Bergamo in the investigated period, had most sever PM10 pollution 
events in comparison to Lombardy cities. In fact, Bontempi et al. (2020) 
argue that the current pandemic’s diffusion patterns are caused by a 
multiplicity of environmental, economic and social factors and that the 
spread of the infection is more non-linear and depends on measures, 
health care system’s efficiency and other factors, which could even 
explain different trajectories. For example, Bontempi (2020a) found a 
strong correlation (even higher than with air pollutants) between 
commercial exchanges (that exemplify the social interactions) and 
COVID-19 diffusion in Italy. Thus, it could happen that the contagion 
was greater in those areas that, in addition to greater mobility, had high 
economic/commercial exchanges. 

5. - Conclusion 

Our study might have some limitations. First of all, we used an 
ecological design. The potential ecological fallacy should be taken into 
account and, when interpreting the results, no inferences should be 
made at the individual level. Also, there might still be unmeasured 
confounding bias inherent in this type of design. However, we have tried 
to control for bias, including in the models both observed variables, 
demographic and socioeconomic variables, as well as, unstructured and 
structured confounders, random effects, that captured unobserved 
confounders at the small area level, and spatial and temporal depen
dence, respectively. On the other hand, although data are not yet 
available at the individual level, we are sure that when we have the data, 
we will be able to contrast the findings of our study with them. 

Second, all the variables we had were measured with error. As we 
explained, we control for non-random measurement errors, both those 
associated with using an estimator of the incidence of COVID-19, and 
those associated with estimating long-term exposure to air pollutants. 
However, we were unable to control other measurement errors. Gov
ernments and agencies do not use the same COVID-19 death definition. 
For example, according to the Ministry of Health (Government of Spain) 
in Catalonia, until June 21, 2020, there were 5666 deaths (Secretaría 
General de Sanidad, 2020). However, according to the Government of 
Catalonia there were 6456 deaths (Open Government, 2020). For the 
Government of Catalonia, one death by COVID-19 is both the one who 
had a positive result on some test (PCR or fast test) and the one who 
presented symptoms at some point and a sanitary professional classified 
them as a possible case, but they did not have a diagnostic test with a 
positive result (Open Government, 2020). For the Government of Spain, 
until May 21, one death by COVID-19 was someone who presented a 
positive result by PCR. From then on, it uses the same definition as in 
Catalonia, although it has not yet updated the information prior to that 
date. 

As we said, with the exception of population density, all other 
socieconomic and demographic variables were observed at the census 
tract level and then they were averaged, weighted by population, to 
obtain their value in the small area. However, not all residents in the 
small area actually had these mean values of the variables, leading to a 
measurement error, most likely random. If the explanatory variables are 
measured with error, the estimators will be inconsistent (Greene, 2018). 

Fig. 4. Maps of the smoothed relative risks of a death in the regions (comarcas) of Catalonia. February 25 - May 16, 2020. Left. Before the peak of the 
pandemic (which occurred in the first week of April). Right. After the peak of the pandemic (which occurred in the first week of April) 
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Nevertheless, if the between-area variability of the variable measured 
with error is much greater than the within-area variability of such var
iable then the effect of measurement error on the estimator consistency 
may be negligible (Elliott and Savitz, 2008). In our case, this occurred 
with the ABSs but not with the regions. As we pointed out, the bound
aries of the ABSs are determined based on geographical, demographic, 
social and epidemiological factors, as well as on the accessibility the 
population has to services. A region is an administrative unit that, in 
most cases, is quite heterogeneous. In any case, when, as in the region, 
this criterion is not met, the presence of measurement errors tends to 
underestimate the effect of the variable measured with error (Greene, 
2018). 

Third, we were unable to distinguish whether the effects of the 
variables that we found associated with the spread of COVID-19 were 
more related to initial contagion or subsequent diffusion mechanisms 
(Bontempi et al., 2020). Our hypothesis is that we have provided evi
dence of the different starting conditions with which they found the 
small areas (through both observed and unobserved confounders, such, 
in particular, individual heterogeneity) for, in the words of Bontempi 
et al. (2020), the development of the different contagion trajectories in 
each of those small areas. 

Fourth, there are a number of limitations inherent in spatio-temporal 
ecological designs. In them it is essential to minimize within-area 
exposure variability and maximize between-area exposure variability 
[49]. As we have mentioned, this is true when we used ABSs. On the 
other hand, these designs assume that the exposure that a person has 
suffered is the same in that of the area in which their residence has been 
identified. In our case, that person’s residence was identified from their 
health card (Open Government, 2020). However, the person does not 
have to have always resided in the same area and/or could have been 
exposed in different areas. Fortunately, this measurement error, 
although unavoidable in any spatio-temporal ecological design, is also 
random. Another problem is known as the ‘modifiable areal unit prob
lem’ (MAUP). The MAUP, which refers to data aggregation in units for 
analysis, is a potential source of bias that affects spatial studies using 
aggregated data. Wang and Di (2020) found that the association be
tween NO2 and COVID-19 deaths varies when the data is aggregated at 
different levels. Thus, they found that NO2 was a protective factor on 
mortality in the Hubei Province, however, it was a risk factor when 
considering an aggregation of Wuhan districts (from 13 to four districts). 
Similar differences were discovered in the Henan Province, where the 
positive city-level association became negative when the aggregation 
strategy was employed (Wang and Di, 2020). In our case, perhaps part of 
the non-significance of PM10 in daily mortality could be attributed to 
MAUP. 

Finally, from a methodological point of view, in the models we have 
assumed that space and time were independent. In other words, the 
spatial variability of the pandemic did not vary over time. Although the 
results seem to confirm our assumption, we estimated another GLMM for 
daily incident positive cases, with the same specification, but assuming 
that, although space and time were not independent, they were sepa
rable. The estimators of the RRs were very similar to those shown in this 
work. However, we believe that these could vary with a dependent and 
non-separable time and space specification. In any case, this aspect de
serves further research. 

We believe that these limitations are offset by the strengths of our 
study. In particular, we highlight four. First, although we are not the 
only ones to consider small areas below the municipality (You et al., 
2020, analyzed the districts of Wuhan, China), we are in using a 
spatio-temporal model to evaluate the effects of long-term exposure to 
air pollutants on the spatial spread of COVID-19. Second, we used 
models in which we control for a wide range of confounders, observed 
and unobserved, and for spatial and temporal dependence, that is, for 
the spread of the disease in the territory and over time. Third, we have 
shown the robustness of our results to a different specification errors (i.e. 
outliers, non-random measurement errors). Finally, we have exclusively 

used open data. 
Although it is possible that there are biological mechanisms that 

explain, at least partially, the association between long-term exposure to 
air pollutants and COVID-19, we hypothesize that the spatial spread of 
COVID-19 in Catalonia is attributed to the different ease with which 
some people, the hosts of the virus, have infected others. That facility 
depends on the heterogeneous distribution at a small area level of var
iables such as population density, poor housing and the mobility of its 
residents, for which exposure to pollutants has been surrogate. 

We believe that our results can serve health authorities to take 
measures (lockdown, partial confinement, etc.) to prevent future out
breaks of this pandemic or future pandemics. 
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