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BAYESIAN STATISTICS

> Very schematically, it could be said that for frequentists (classical statisticians),
probability is considered as the limit of the relative frequency when an experiment is

performed repeatedly a very large number of times under identical conditions..

» For Bayesians, on the other hand, probability is the fundamental measure of

uncertainty and this subjective concept of probability must be constructed with
scientific judgment..

5. Introduction to INLA and R INLA
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BAYESIAN STATISTICS

> In a Bayesian model, we generally want the a posteriori distribution for our models
(e.g., the distribution of parameters given the data), or a posteriori predictive

distributions (for extrapolation/prediction - the distribution of new values given the

observed ones)

5. Introduction to INLA and R INLA
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> The a posteriori distribution is equal to the probability of observing the data
multiplied by the a priori distribution of the parameters (or priors), with a

normalization constant (so that the a posteriori integral is equal to 1).

> In a more simplified way (without considering the constant of normalisation)
p(0ly) «p(yl6)p(6)

5. Introduction to INLA and R INLA
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BAYESIAN STATISTICS

p(8ly) x p(y|6)p(0)

0 is the vector of parameters.
p(y|@) is known as likelihood (the model).

p(8) is the a priori distribution, or priors.

5. Introduction to INLA and R INLA
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BAYESIAN STATISTICS

> The choice of the priors to be used in each case is a subjective choice and must often

be decided on the basis of expert judgment and the type of data available

> When the a posteriori distribution is from the same family as the a priori distribution

used, we talk about conjugate distributions.

> The advantage of using these is that “priors” have good mathematical properties

calculate the a posteriori distributions.

. . Versemblanga Parametre a estimar Prior
Conjugated priors  Nomal Mitjana Normal
Normal Precisi6 (1/variancia) Gamma
Binomial Probabilitat d’éxit Beta
Poisson Mitjana Gamma

5. Introduction to INLA and R INLA
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BAYESIAN STATISTICS

> In a frequentist approximation (estimation) we often maximize the probability of
the data (that is, the likelihood), using numerical methods, such as Newton-Raphson
or others, to obtain a point estimate of a given parameter (which we see as non-

random - in other words, fixed - but unknown).

> In a Bayesian approximation (computing or inference) we obtain an a posteriori
distribution for the parameter (which is considered to be a random variable), for which
we can provide summary statistics (mean, median or mode) and quantiles to directly

obtain intervals of credibility.

5. Introduction to INLA and R INLA
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BAYESIAN STATISTICS

> The problem with Bayesian approximation is that while the likelihood and a priori
distribution are easy to obtain, p(8|y) tends to be analytically intractable (especially

when we do not use conjugated priors).

5. Introduction to INLA and R INLA
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BAYESIAN COMPUTING

> We want to obtain the (marginal) a posteriori distribution, p(8|y):

p@) = | [ - [ p@v oy

where 6._;) denotes vector 6 excluding the component i.
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BAYESIAN COMPUTING

> In general, the integrals are intractable and numerical methods like Markov chain
Monte Carlo (MCMC) methods are used to simulate samples of conditional

distributions and to calculate the marginal distribution of each parameter of interest.

0")).

> A sequence of random variables 6©,6%,6®, .. form a Markov chain if 8" — p@

> That s, conditioned to the value '), gt+) is independent of 8, ..., g©.

5. Introduction to INLA and R INLA



UdG Ciberesp

GRUP DE RECERCA EN ESTADISTICA
EEEEEEEEEEEEEEEEE

BAYESIAN COMPUTING

> There are various algorithms to design Markov chains.
> Among them, the ‘Gibbs sampling’ algorithm is one of the simplest of the MCMC.

> However, there are also others: Metropolis, Metropolis-Hastings, etc.

5. Introduction to INLA and R INLA
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BAYESIAN COMPUTING

Gibss sampling
> Let @ be avector of unknown parameters 6=(6,,6,....,6,)
1. Initial values are chosen 6".6"....6," for the components.

2. g is sampled from pl6[6l",69...00,x)

oV is sampled from pl6,|62,6"...6%,x)

6% is sampled from p(ﬁk\91(1),92(1),...6’,?_)1,)6)

3. Stage 2 is repeated many times. If the number of repetitions is very high we obtain a

simple for p(9|x). 5. Introduction to INLA and R INLA
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BAYESIAN COMPUTING

> MCMC have been developed in software such as WinBUGS.

> MCMC are slow, do not scale well (in other words, results are not invariant to changes
in scale and/or sample size) and, for some complex models, they can fail (the model
will not converge). More recent programming (JAGS, Stan) has attempted to

overcomes these challenges.

5. Introduction to INLA and R INLA
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BAYESIAN COMPUTING

> Alternative INLA (Integrated Nested Laplace Approximations).

5. Introduction to INLA and R INLA
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> MCMC is an asymptotically exact method, while INLA is an approximation.

> Empirically, the MCMC error and the INLA error tend to be very similar, as has been

demonstrated in many simulation studies.

Elapsed time in seconds Elapsed time in seconds

n rjags rinla n rjags r-inla
100 4.19 0.176 100 30.394 0.383
500 18.141 0.359 500 142.532 1.243
5000 381.573 2.787 5000 1714.468 5.768
25000 2203.679 13.27 25000 8610.32 30.077
100000 8873.836 52.787 100000 got bored after 6 hours 166.819
Simple linear regression Poisson regression with random effects (non-structured) in the constant

https://www.precision-analytics.ca/articles/a-gentle-inla-tutorial/

5. Introduction to INLA and R INLA
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Random field, Gaussian field (GF), Gaussian Markov Random Field (GMRF)

> When using Bayesian inferences for GMRF, INLA can be used (instead of MCMC).

Many environmental phenomena, even if defined continuously over a region and
in time, can be monitored and measured only at a limited number of spatial lo-
cations and time points. This is the case, for example, of air pollutant concentra-
tion, meteorological fields (temperature, precipitation, wind velocity, etc.) as well
as geohydrological and oceanographic variables (soil moisture, wave height, etc.).
In the geostatistical approach (see, for example, Cressie 1993; Gelfand et al. 2010;
Cressie and Wikle 2011), data coming from monitoring networks are assumed to be
realisations of a continuously indexed spatial process (random field) changing in time
denoted by

Y(s,1) = {y(s,t) s(s.1) e D CR? x IR}.

Cameletti M, Lindgren F, Simpson D, Rue H. Spatio-temporal modeling of particulate matter concentration through the SPDE approach. AStA Adv Stat Anal. 2013; 97(2):109-131. doi: 10.1007/s10182-012-0196-3.

5. Introduction to INLA and R INLA
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Random field, Gaussian field (GF), Gaussian Markov Random Field (GMRF)

> @Gaussian field (GF).

These realisations are used to make inference about the process and to predict it at de-
sired locations. Usually, we deal with a Gaussian field (GF) that is completely spec-
ified by its mean and spatio-temporal covariance function Cov(y(s,t), y(s’,t")) =
a2C((s,1), (s’,t")), defined for each (s, ¢) and (s’, ") in R? x R. Moreover, the pro-
cess is second-order stationary if its mean is constant and the spatio-temporal co-
variance function depends on the locations and time points only through the spatial
distance vector h = (s — s’) € R? and the temporal lag = (t — t’) e R.

Cameletti M, Lindgren F, Simpson D, Rue H. Spatio-temporal modeling of particulate matter concentration through the SPDE approach. AStA Adv Stat Anal. 2013; 97(2):109-131. doi: 10.1007/s10182-012-0196-3.

5. Introduction to INLA and R INLA
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STADISTICA

GF, Big n problema, Gaussian Markov Random Field (GMRF)

> Suppose we have COVID-19 incidence data for 6 health areas, with the following

geographical distribution:

1 2 3
4 5 6
7/ 8 9

5. Introduction to INLA and R INLA
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GF, Big n problem, Gaussian Markov Random Field (GMRF)

> Among other things, we want to estimate the speed of COVID-19 transmission in these

health areas (that is, correlation).

5. Introduction to INLA and R INLA
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GF, Big n problem, Gaussian Markov Random Field (GMRF)

> Among other things, we want to estimate the speed of COVID-19 transmission in these

health areas (that is, correlation).

/ 1 P12 P13 Pia Pis Pie P17 Pis Pio

Piz 1 Pz Pas Pas Pas P27 Pas 929\
Pz P2z 1 pas P3zs Pz P37 P3s  P3o
Pia P24 P3a 1 Pas Pac Pa7 Pag  Pao
Pis P25 P3s Pas 1 Pse Ps7 Pss  Pso
Pi6 P26 P3c Pas Pse 1 Pe7 Pes Peo
P17 P27 P37 Pa7 P75 Pe7 1  Prg Pro
Pis P28 P3s Pag Pss Pes Pz 1  Pgo
P1o P20 P3zs Pas Pso Pes P79 Pgg 1

> Itis a'dense' matrix, with 36 unknown parameters (could it be more than 36? What if it

were 36x2=727).
) 5. Introduction to INLA and R INLA
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Gaussian Markov Random Field (GMRF)

» To resolve the Big n problem, the GMRF impose the assumption of conditional

independence on the GF. For example, there is ‘only’ a direct correlation between the

neighbours. 1 5 3
4 5 6
7/ 3 9

> In this case, we will estimate the correlations (1,2), (1,4), (1,5), (2,3), (2,5), (2,6), (3,5),
(3,6), (4,5), (4,7), (4,8), (5,6), (5,7), (5,8), (5,9), (6,8), (6,9), (7,8) and (8,9).

> We have gone from 36 to 19 parameters.
5. Introduction to INLA and R INLA
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Gaussian Markov Random Field (GMRF)
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> In this case, we will estimate the correlations (1,2), (1,4), (1,5), (2,3), (2,5), (2,6), (3,5),
(3,6), (4,5), (4,7), (4,8), (5,6), (5,7), (5,8), (5,9), (6,8), (6,9), (7,8) and (8,9).

> This is called a sparse matrix.

/ 1 po2
Pz 1
’ P23
P14

P1is P2s
P26

P1a

P23
i |

1

P35 Pas
P36 Pae

Pag

P1s
P2s
P35
Pss
1

Pse

P26
P36

Pse
1

P7s

Pssg
Ps9

Pessg
Pe9

P47
Ps7

4
P7s

.
Pas
Pss  Pso
Pes  Pe9
P7s

1 pgo
Pge 1
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Gaussian Markov Random Field (GMRF)

> If, apart from only the ‘adjacent neighbors’ being correlated, the correlation is the

same for all of them, the structure is known as CAR (Conditional autoregressive).

/1p p P \
p 1 p p P
o p 1 P P
p 1 p P g
g pp il e PP
P e p i P P
g L.p
\ pppplp/
, A SR |
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Gaussian Markov Random Field (GMRF)

GLMM

Ui
In (1 — .Ui) = Poi + B1X1; + B2x2;
Boi= Bo + ni
Va?"()’i|xi) = leli(l — U;)

> The model is a latent Gaussian model if all the parameters have a Gaussian joint
distributions, that is (By, B1, B2, ni, ¢) ~N(0, X).

> If we assume conditional independence of the observations of x;, the latent Gaussian

model will be a GMRF. 5. Introduction to INLA and R INLA



UdG Ciberesp

GRUP DE RECERCA EN ESTADISTICA
EEEEEEEEEEEEEEEEE

e The first “ingredient” of the INLA approach is the definition of conditional
INLA probability, which holds for any pair of variables (x, z) — and, technically,
provided p(z) > 0

p(x | z) = — p(x,z) = p(x | z)p(2)

e |n particular, a conditional version can be obtained further considering a

third variable w as
p(x,z | w)

p(x | z,w)

which is particularly relevant to the Bayesian case.

p(z | w) =

5. Introduction to INLA and R INLA
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e The second “ingredient” is Laplace approximation.

e Main idea: approximate the integral

/ f(x)dx = / exp[log f(x)]dx

by means of a Taylor's series expansion around the mode
x* = argmaxy log f(x):

ooe g
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/ F(x)dx ~ / exp [Iog F(x*) + & _QX*)Q i k’)ai Fix)

92 log f(x)

502 we can re-write

X—X:*

e Setting 02" = —1/

x:x*]

/f(x)dx o /exp [_ <x2—05;>2] dx

e Thus, under LA, f(x) = Normal(x*.crz*).

5. Introduction to INLA and R INLA
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Gaussian Markov Random Field (GMRF)
> We start from Bayesian hierarchical models specified in two stages.

> The first stage consists in the observational model n(y|x), where y denotes the vector

of observations and x are the unknown parameters, which follow a GMRF 7 (x|8).

5. Introduction to INLA and R INLA
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> The marginal a posteriori distributions of the GMRF,
”(xi|y):'[977(xi

> They are estimated using the finite sum (evaluated at support points 6, using

0,y )(6)y )6

appropriate weights A)

n(xly) = D w(xilow y) m(6kly)

where 7(x;|0,y) and #(6x|y) denotes approximations of m(x;|0y,v) and w(6xl|y) ,
respectively.

5. Introduction to INLA and R INLA
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Step 1. Explore the joint posterior for the hyperparameters p(?) | y) and produce
INLA a grid of “good” integration points {1)*} associated with the bulk of the

mass, together with a corresponding set of area weights {A*}:

VY2

VY1 Vi
Grid strategy Central Composite Design strategy (CCD)

The CCD strategy is the default one in R-INLA: it produces a lower number
of points which are however enough to capture the variability of the joint
distribution (see [Martins et al., 2013]).

5. Introduction to INLA and R INLA
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> The second stage is given by the hyperparameters 6 and the (marginal) a priori
distributions mw(8) (priors).

> The marginal a posteriori distribution of the hyperparameters, n(6|y), is estimated

using the Laplace approximation,

where the denominador 7;(x|0,y) denotes the Gaussian approximation of n(x,6,y) and
x*(0) is the conditional mode.

5. Introduction to INLA and R INLA
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Step 2. After the grid exploration, obtain the marginal posterior p(vx | y) using ar
INLA interpolation algorithm based on the values of the density p(v | y) evaluatec
in the integration points {1*} (see Martins et al., 2013).

Step 3. For each integration point in 7)™ and parameter 6;, evaluate the approximatec
marginal p(¢; | /. y) for some selected values of 6;.

Step 4. For each i obtain the marginal posteriors p(6; | y) using numerical inte-
gration’

B6; | y) ~ Zw« B(v* | y) A%

IRecall that p(0; | ¥) = [ p(0i,% | ¥)dwp = [ p(0; | 1b.y)p(s | y)dep

5. Introduction to INLA and R INLA
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