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1  Background

Over the last few decades, advancements in computing 
and real-time data collection have enabled the collection of 
vast amounts of spatio-temporal data. As a result, statistical 
modeling of spatiotemporal data has gained more popular-
ity and is now being utilized in various disciplines (Wood et 
al. 2004; Fuglstad and Castruccio 2020). Applications range 
from the analysis of meteorological data, environmental 
data (Blangiardo et al. 2013), ecology (Zuur et al. 2017), 
and natural disasters such as forest fires (Juan et al. 2012; 
Serra et al. 2014), landslides (Lombardo et al. 2020), and 
earthquakes (Liu and Stein 2016; Field et al. 2017). Addi-
tionally, spatiotemporal modeling is used in urban planning 
and strategic decision-making for issues such as traffic acci-
dents (Prasannakumar et al. 2011; Liu and Sharma 2018), 
criminal activities (Leong and Sung 2015; Hossain et al. 
2020), air pollution (Mota-Bertran et al. 2021; Saez and 
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Abstract
Spatial statistics is traditionally based on stationary models on Rd like Matérn fields. The adaptation of traditional spatial 
statistical methods, originally designed for stationary models in Euclidean spaces, to effectively model phenomena on 
linear networks such as stream systems and urban road networks is challenging. The current study aims to analyze the 
incidence of traffic accidents on road networks using three different methodologies and compare the model performance 
for each methodology. Initially, we analyzed the application of spatial triangulation precisely on road networks instead of 
traditional continuous regions. However, this approach posed challenges in areas with complex boundaries, leading to the 
emergence of artificial spatial dependencies. To address this, we applied an alternative computational method to construct 
nonstationary barrier models. Finally, we explored a recently proposed class of Gaussian processes on compact metric 
graphs, the Whittle-Matérn fields, defined by a fractional SPDE on the metric graph. The latter fields are a natural exten-
sion of Gaussian fields with Matérn covariance functions on Euclidean domains to non-Euclidean metric graph settings. A 
ten-year period (2010–2019) of daily traffic-accident records from Barcelona, Spain have been used to evaluate the three 
models referred above. While comparing model performance we observed that the Whittle-Matérn fields defined directly 
on the network outperformed the network triangulation and barrier models. Due to their flexibility, the Whittle-Matérn 
fields can be applied to a wide range of environmental problems on linear networks and more general metric graphs such 
as modeling of water contamination in stream networks or modeling air quality or accidents on urban road networks.
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Barceló, 2022) and epidemiology and infectious disease 
dynamics (Schrödle et al. 2012; Schrödle and Held 2011; 
Moraga 2020).

Bayesian hierarchical models are useful for analyzing 
spatial and spatio-temporal data (Gómez-Rubio 2021; Mor-
aga 2020). They allow for flexible borrowing of strength 
across space and time, which improves estimation and pre-
diction. In this approach, the likelihood of observed data is 
given π (y|θ), and a prior distribution for unknown parame-
ters is π (θ|η), where η represents hyperparameters. We cal-
culate the posterior distribution of θ using Bayes’ theorem:

π (θ|y) ∝ π (y|θ) π (θ)

Bayesian methods combine prior knowledge with data. 
They provide credible intervals and give probability values 
that are easy to understand. These methods can also handle 
complex models that involve repeated measures, missing 
data, and multivariate data (Rue and Held 2005; Rue et al. 
2009, 2017; Gómez-Rubio 2021). One main challenge in 
using Bayesian methods is calculating the posterior π (θ|y)
. This often involves high-dimensional integration, which is 
usually difficult to solve exactly. So, even when the likeli-
hood and prior distributions have clear formulas, the pos-
terior distribution may not (Rue et al. 2009; Gómez-Rubio 
2021; Moraga 2020). Depending on the objective of the 
study, various types of models are used with spatial and spa-
tio-temporal data. With the development of Markov chain 
Monte Carlo (MCMC) simulation methods, researchers 
began to deal with these types of data using Bayesian meth-
ods (Gilks and Robert, 1996; Robert et al. 1999). To fit gen-
eralized linear mixed models (GLMM) in a spatial context, 
a Bayesian approach with MCMC simulation methods has 
traditionally been used. However, with the increase in data 
size and resolution, the computational burden of MCMC 
has become a critical issue (Rue et al. 2009, 2017; Taylor 
and Diggle 2014).

To address this issue, Rue et al. (2009), proposed a 
significantly faster solution as integrated nested Laplace 
approximations (INLA) which focuses on models that can 
be expressed as latent Gaussian Markov random fields 
(GMRF). Advancements in spatial statistics have made it 
possible to fit continuous spatial processes with a Matérn 
covariance function using INLA. Lindgren et al. (2011) 
introduced a solution for the stochastic partial differential 
equation (SPDE) that provides a sparse representation of the 
solution fitting within the INLA framework. The solution 
for the spatial process can be represented as a sum of basis 
functions and associated coefficients, where the basis func-
tions approximate the solution, and the coefficients follow a 
Gaussian distribution. This spatial model is implemented in 
INLA as the stochastic partial differential equation (SPDE) 

latent effect (Krainski et al. 2018). However, fitting this 
model with INLA requires the definition of a mesh over the 
study region to compute the approximation to the solution. 
Literature shows several research works where spatio-tem-
poral models are constructed through Kronecker products 
of a spatial Matérn model and first- or second-order autore-
gressive models in time (Blangiardo and Cameletti 2015; 
Lindgren et al. 2015; Bakka et al. 2018; Moraga 2020; Bolin 
and Wallin 2020; Lindgren et al. 2022) as applied within the 
framework of INLA.

1.1  Modeling on complex distributed spatial 
regions

Spatial models often assume isotropy and stationarity, 
implying that spatial dependence is direction invariant and 
uniform throughout the study area. However, these assump-
tions are violated when physical barriers are present in the 
form of geographical features as in case of complex island 
structures or in case of man-made barriers like disease 
control interventions and in animal species distribution 
problems (Myer and Johnston 2019). In these cases, the 
dependency among the observations should not be based 
on the shortest Euclidean distance between the locations 
but should take into account the effect of physical barriers 
and smooth across the land over holes or physical barriers 
(Bakka et al. 2019).

The traditional SPDE method triangulates the entire study 
area based on continuous geographic boundaries (Lindgren 
et al. 2011; Krainski et al. 2018). Problems arise in typical 
environmental research work such as modeling species dis-
tribution, where physical barriers such as mountains, roads 
or rivers could pose obstacles for the movement of species. 
Since propagation through those obstacles is not possible, 
spatial correlation should not follow the shortest path, but 
should travel around them. However, studies show that the 
meshes are usually generated for the entire study region, 
including the physical barriers. This approach involves gen-
erating an SPDE mesh for the entire study region, despite 
the presence of physical barriers that make the study area 
complex and distributed. For example, Lezama-Ochoa et 
al. (2020) used this approach to predict the occurrence of 
spine-tail devil ray species in the eastern Pacific Ocean. Bi 
et al. (2021) conducted a similar study to estimate seabird 
bycatch variations in the mid-Atlantic bight and northeast 
coast. In our review of the literature, we have explored 
several studies that have used the same approach to model 
complex land structures (Wang and Ranalli 2007; Lourenço 
et al. 2011; Paradinas et al. 2015; Crespo et al. 2019; Chaud-
huri et al. 2023a; Chaudhuri 2023c).

We aim to build upon these studies and further examine 
the application of INLA-SPDE in complex land structures, 
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particularly in linear networks. Another serious concern 
to model observations in complex island structures is the 
anomaly related to the polygon structure of the coastlines. 
Coastlines are often considered as fractal structure, in the 
sense that any finite approximation will not be accurate 
(Bakka et al. 2019). For the same coastline polygons, dif-
ferent researchers may use varying approximations which 
can lead to conflicting interpretations and predictions. In 
that case, the model loses its scientific credibility. It is worth 
mentioning that a stationary model cannot be aware of the 
coastline structure and will inappropriately smooth over 
the features. In spatial modeling, classical models become 
unrealistic when they fail to account for holes or physical 
barriers in the landscape. This can lead to further unrealistic 
assumptions.

Bakka et al. (2019) introduced the barrier model as a 
solution to the limitations of existing models. Unlike tra-
ditional models, this new model does not rely on the short-
est distance around a physical barrier or specific boundary 
conditions. Instead, it provides a non-stationary Gaussian 
random field which can handle sparse data and complex 
barrier structures. Additionally, the computational cost is 
comparable to that of a stationary model. In a recent study, 
Martínez-Minaya et al. (2019) have used the barrier model 
approach to design a Bayesian hierarchical species distri-
bution model (SDM) to determine vulnerable habitats for 
bottlenose dolphins in the Northern Sardinia archipelago 
in Italy. Likewise, the use of barriers is also crucial in the 
control of infectious diseases. Cendoya et al. (2022) stud-
ied the impact of barriers on the spatial distribution of a 
quarantine plant pathogenic bacterium in Alicante, Spain. 
The simulation study in the Archipelago (Bakka et al. 
2019) and other applications demonstrate that while barrier 
models have a similar computing cost to their correspond-
ing stationary models, they are more flexible and realistic 
when used in complex spatial regions with physical barri-
ers. However, some anomalies are found when the barriers 
are infinitely thin, in those cases artificially thicker barriers, 
such that the width is at least a mesh triangle, can make 
the model functional. Li et al. (2023) extended the barrier 
model by introducing a multi-barrier model that can char-
acterize areas with different types of obstacles or physical 
barriers. Authors compared the stationary Gaussian model, 
barrier model, and proposed multi-barrier model using real 
burglary data, and the results suggest that all three models 
have similar performance.

1.2  Modeling on metric graphs

In many environmental applications such as urban road net-
works it is essential to define statistical models on linear 
networks. A major focus of research in this field has been 

spatiotemporal modeling of traffic accidents on urban road 
networks (Karaganis and Mimis 2006; Castro et al. 2012; 
Boulieri et al. 2017; Liu et al. 2019; Chaudhuri 2023c). 
Studies like, Xu and Huang (2015), Wang et al. (2019) and 
Eboli et al. (2020), effectively capture the spatial depen-
dence and heterogeneity in traffic accident data, improv-
ing the accuracy and robustness of predictions compared to 
traditional regression models on road networks. Recently, a 
number of models on road safety have been proposed fol-
lowing Bayesian methodology. Cantillo et al. (2016) used 
a combined GIS-Empirical Bayesian approach in modeling 
traffic accidents in the urban roads of Columbia. A similar 
research work on urban road network of Florida by Zeng 
and Huang (2014) explored Bayesian spatial joint model-
ing of traffic crashes. A space–time multivariate Bayesian 
model was designed by Boulieri et al. (2017) to analyze 
road traffic accidents by severity in different cities of UK. 
Recently, Galgamuwa et al. (2021) used Bayesian spa-
tial modeling using INLA in predicting road traffic acci-
dents based on unmeasured information at road segment 
levels. Due to densely distributed nature of the road seg-
ments, the majority of these studies used continuous spatial 
structures and traditional spatial stationary models such as 
Matérn fields (Matérn 1960). As a result, though the sam-
pling points (here the traffic accident locations) are mainly 
located on the road networks, the SPDE triangulations are 
designed on the entire study area, including the areas with-
out road network. Thus, the model result might be unpre-
ventably generalized as it is going to estimate predicted 
values for the regions where there is no chance of incident 
to occur. In this context, Chaudhuri et al. (2022) recently 
proposed spatiotemporal modeling of road traffic accidents 
using explicit network triangulation on the road network of 
London, UK. In a similar study by Chaudhuri et al. (2023b), 
SPDE triangulation has been designed precisely on linear 
road networks of Barcelona, Spain to generate dynamic traf-
fic accident risk maps. The methodology used in these two 
studies is a novel approach to perform spatio-temporal anal-
ysis precisely on road network and contributes to the rela-
tively small amount of literature in this domain. However, in 
both cases, the complex boundary regions of the buffer road 
network result in high boundary effect, which can influence 
the spatial effects of the models. This is a serious limitation 
of the SPDE network triangulation approach.

In general, Gaussian random fields with Matérn cova-
riance functions are a popular choice but they have a sta-
tionary and isotropic covariance structure. Dawkins et al. 
(2021) made a novel attempt to apply a barrier model on 
linear road networks. This research showed a non-station-
ary approach to accurately estimate air quality levels on the 
roads of Brisbane, Australia using Bayesian methods. The 
study accounted for the topographical diversity of buildings 
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The aim of this paper is two-fold. The principal aim is to 
apply the new class of Whittle-Matérn fields in the R-INLA 
framework to traffic accident data. Secondly, to compare 
and contrast the performance of the proposed model with 
two other distinct approaches namely, the SPDE network 
triangulation models and barrier models on linear networks. 
R (version R 4.3.1) programming language (R Core Team 
2023) has been used for statistical computing and graphical 
analysis. All computations were conducted on a quad-core 
Intel i9-4790 (3.60  GHz) processor with 32  GB (DDR3-
1333/1600) RAM.

The rest of the paper is organized as follows. Section 2 
reports about the study area and data settings along with 
official sources of data. In Sect. 3, the first two subsections 
provide a brief overview of the existing SPDE network 
triangulation model and barrier model approaches. The 
final subsection of Sect. 3 presents Gaussian processes on 
compact metric graphs introduced in Bolin et al. (2024a). 
Section 4 is devoted to present and compare the model per-
formance along with some related discussions. The paper 
ends with some concluding remarks in Sect. 5.

2  Data

Barcelona is the largest and capital city of Catalonia, Spain 
and is located on the northeastern coast of the country. 
With a population of 1.6 million and a density of 15,748 
inhabitants per square km, it is the second most populous 
municipality in Spain (OpenDataBCN 2021). The city is a 
major cultural, economic, and financial center, as well as 
a transportation hub for southwestern Europe with a well-
developed motorway network. In this study, a small area of 
4.4 square km in the central part of the city, consisting of 
2058 road segments, has been considered as depicted in the 
left panel of Fig. 1 inside the black circle. The road network 
data has been obtained from the Open Data BCN repository 
(OpenDataBCN 2021). The police department in Barcelona 
keeps records of traffic accidents and related casualties and 
injuries, which are annually published by Open Data BCN 
under the Creative Commons Attribution 4.0 for public sec-
tor information. The data is free and available for public 
sector information.

During the period from January 2010 to December 2019, 
there are 11,067 recorded traffic accidents in the study area. 
The locations of these accidents are shown in red on the 
road network map in the right panel of Fig. 1. The study uti-
lized five datasets from Open Data BCN, which are linked 
by a record code from 2010 to 2019. The common charac-
teristics recorded in the data consists of a unique event ID, 
district and neighborhood, postal address and geographi-
cal coordinates, and the day and time of occurrence. We 

in proximity to city roads by employing a non-stationary 
barrier model that extends upon the INLA framework.

In recent years, there has been a growing interest in 
examining point patterns on linear networks. In this con-
text, Møller and Rasmussen (2022) proposed models for 
isotropic Gaussian processes and various Cox processes 
with isotropic pair correlation functions on linear networks, 
employing isotropic covariance functions based on geode-
sic or resistance metrics. On a different note, Porcu et al. 
(2023) conducted a recent study focusing on graphs with 
Euclidean edges. They introduced stationary non-separable 
space–time covariance functions to model spatio-temporal 
data on generalized networks, such as Euclidean trees and 
linear networks. Filosi et al. (2023) explores generalized 
networks with evolving topological structures, including 
graphs with Euclidean edges, addressing linear and periodic 
structured circular time scenarios and demonstrates the con-
struction of proper semi-metrics for these temporally chang-
ing networks.

On the other hand, Bolin et al. (2024a) presented an 
alternative to use the Euclidean distance by defining simi-
lar models with a non-Euclidean metric on the network. 
Because it can be challenging to find a class of positive defi-
nite functions suitable for creating Gaussian fields on met-
ric graphs when using a non-Euclidean metric, Bolin et al. 
(2024a) proposed characterizing the field through a SPDE 
defined directly on the network. The resulting model the 
Whittle-Matérn fields, can be used in inference without any 
finite element method approximations and does not have the 
problems with boundary effects that the barrier models have 
(Bolin et al. 2023b).

1.3  Motivating example

Accessible, and sustainable transport systems in cities are a 
core target of 2030 sustainable development goals (SDGs) 
adopted by the United Nations (UNDP 2015). Thus, there is 
an opportunity to apply advanced computational techniques 
to model the spatial variation in the incidence of road traffic 
accidents in a linear road network system to aid in accident 
prevention and multi-disciplinary road safety measures. The 
motivating example we have used in this paper is ten-years 
(2010–2019) of daily traffic accident records on the road 
networks from the central part of Barcelona, Spain. The 
network is complex enough to motivate a general solution 
using the proposed non-Euclidean metric on graph model 
and also compare the results with SPDE network model and 
barrier model. Further, the study region contains the road 
segments which observe the maximum daily records of traf-
fic accidents as well as some road segments where there are 
no records of accidents during the entire study period.
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3  Methodology

Our discussion in this section initially covers two existing 
models, namely network mesh and barrier models on linear 
network, and in the third subsection we explore the recently 
proposed Whittle-Matérn fields (Bolin et al. 2024a) and 
their application to the selected dataset.

3.1  Network triangulation

As discussed in Sect. 1.2, analysis of spatiotemporal events 
such as traffic accidents, street crimes, and issues in water 
and electric connection networks in cities that occur exclu-
sively on linear networks, it has been observed that conven-
tional INLA-SPDE techniques are frequently used to model 
these events, despite the fact that they are strictly confined 
to linear networks.

When applying the INLA-SPDE method to linear net-
works, creating a triangulation for the entire region enables 
fitting of the INLA model in the study area. However, a 
significant problem arises while predicting events, as the 
observed events are discrete spatial points located pre-
cisely on the road network, whereas models fitted with a 
region mesh cover the entire study area. This implies that 
the locations of predicted events can be placed in any area 
with or without road networks, which is not realistic. Tradi-
tional methods of model prediction using a region mesh are, 
therefore, not appropriate in this context from a scientific 
perspective.

In the current study, due to close proximity of the road 
segments, initially a continuous spatial structure is selected 
for modeling, and triangulation is carried out on the entire 
study area. In this context, Juan Verdoy (2021) argues 
that the best mesh for prediction should have a sufficient 
number of vertices for accuracy but also within a limit to 
reduce computational time. Following this principle, from 
a battery of meshes, the best fitted mesh is selected having 

included three covariates in our models: road length (rang-
ing from 3.69 to 186.25 m) with a mean of 81.61 m, road 
type (values 1 to 7, with higher values indicating lower 
traffic), and road speed limit (ranging from 18 to 80  km 
per hour). Notably, roads with speed limits of 30, 35, and 
50 km per hour accounted for 21%, 28%, and 35% of the 
total sample, respectively. The datasets also include tempo-
ral variables such as year, month, and time of the accident. 
The individual accident locations are adjusted to the near-
est road segments. The number of minor injuries has been 
used as the response variable in the models. Most of the 
accidents (74.76%) have only one minor injury, followed by 
two minor injuries (15.42%) and 3 or more minor injuries 
(3.42%). There were 6.4% of accidents with no minor inju-
ries, and 99.85% of the accidents resulted in no casualties. 
The number of accidents recorded in each year of the study 
are similar, with the highest number (1270) in 2016 and the 
lowest number (847) in 2011.

It is worthy to mention that, in the case of network mesh 
and barrier model the daily minor injuries for individual road 
segment have been aggregated and included in the centroid 
of that segment. This means that other temporal covariates 
related to each accident are not considered in the current 
study. In contrast, the proposed graph model converts road 
segments into the edges of a graph and considers accident 
locations, road network intersections, and the start and end 
nodes of each road segment as the vertices of the graph. In 
the first model, the distances to nearby facilities such as bus 
stops, municipal markets, restaurants, schools, and street 
markets are calculated from the centroid of each road seg-
ment and used as spatial covariates. But in the graph model, 
these distances are calculated from individual vertices of the 
graph. A detailed description of generating the vertices and 
edges of the graph is reported in Sect. 3.3.

Fig. 1  Geographical location of 
Barcelona (left) and road network 
of the study area with traffic acci-
dent locations (right)
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the target locations over which we build the initial Delau-
nay's triangulation.

It is worth to note that, for each road segment, the total 
number of minor injuries has been aggregated daily and 
added at corresponding centroids as the response variable. 
The triangulation is created using the centroids. Figure  3 
(right) depicts the SPDE mesh precisely designed on the 
road network, with accident locations highlighted in red. We 
report the number of vertices in the network mesh is 14,368. 
By aggregating data from locations and converting it into 
event counts per segment, we can utilize Poisson regression 
models together with a Bayesian approach to model traf-
fic accidents on individual road segments. In fact, we use a 
spatial Poisson regression method within a Bayesian frame-
work using INLA and SPDE. Recent research conducted 
in the same study area and utilizing the same dataset, by 
Chaudhuri et al. (2023b), found that a network mesh model 
outperformed the SPDE mesh model for the entire study 
area. Therefore, in this section, we have focused solely on 
the more efficient network mesh model and compared it with 
the two other models discussed in Sect. 3.2 and Sect. 3.3.

In particular, let Yi and Ei be the observed and expected 
number of road traffic accidents on the i-th road segment. 
We assume that conditional on the relative risk, ρi, the num-
ber of observed events follows a Poisson distribution:where 
the log-risk is modeled as

Yi|ρi ∼ Po (λi = Eiρi)

log (ρi) = β0 + Ziβi + S (xi) + ∈i� (1)

Here, S (xi) accounts for the spatially structured random 
effects, and ∈i stands for an unstructured zero mean Gauss-
ian random effect. For the prior selection we have used 
penalized complexity (PC) priors (Simpson et al. 2017). 
Zi represents the spatial covariates. We assigned a vague 
prior to the vector of coefficients β = (β0, . . . ,βp) which 
is a zero mean Gaussian distribution with precision 0.001. 

2352 vertices. Figure 2 depicts the region SPDE mesh with 
11,067 traffic accident locations highlighted as red points. 
However, the fitted mesh as shown in Fig.  2 has a prob-
lem when it covers the entire study area. It is unrealistic and 
ambiguous for the model predictions to cover areas without 
a road network where traffic accidents are unlikely to occur. 
This drives the need to design the SPDE triangulation pre-
cisely on road networks.

The process consists of three phases: generating a buf-
fer region for each road segment, creating a clipped buffer 
polygon that covers only the road network, and design-
ing SPDE triangulation on the clipped polygon to form 
an SPDE network mesh. Choosing the buffer size requires 
finding a balance between the number of vertices in the 
triangulated mesh and computational cost (Krainski et al. 
2018; Juan Verdoy 2021). After evaluating various buffer 
sizes, a 15-m buffer has been identified to be the best option. 
The left panel of Fig. 3 illustrates the 2058 road segments 
with a 15-m buffer around each segment. Following that, 
we merge individual buffer segments into a single polygon 
clipped within a bounding box covering the study area. In 
the final step, we use the centroids of each road segment as 

Fig. 3  Buffered road polygon (left) and Network mesh with data locations highlighted in red (right)

 

Fig. 2  Region mesh with non-convex hull boundary in blue and data 
locations highlighted as red points
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that it is highly unlikely the range is less than 10 m. The 
parameter σ represents the variability of the data and has a 
prior specified as P (σ > 1) = 0.01.

3.2  Barrier model on linear network

The SPDE triangulations discussed in the previous subsec-
tion pose challenges for practical application due to the 
inclusion of assumptions such as Neumann boundary con-
ditions (Ramsay 2002). While modeling events on complex 
spatial regions having physical barriers, Bakka et al. (2019) 
introduced barrier model. As noted in Sect. 1.2, although the 
barrier model was not designed specifically for linear road 
networks, Krainski et al. (2018) applied barrier models in 
modeling anisotropic behavior, such as the propagation of 
noise in urban areas. In their study, urban buildings are used 
as physical barriers and the spatial process is considered on 
the road network of the study area.

In our current study, we have taken a similar approach 
to model traffic accidents by utilizing a barrier model in the 
road network of Barcelona. We have defined polygons of 
individual road segments with a buffer as our study area 
and the remaining land areas that do not include roads serve 
as the physical barriers. The creation of the clipped buf-
fer region and aggregation of the number of minor injuries 
(which serve as the response variable in the model) at the 
centroids of each road segment have been accomplished 
using the same approach outlined in Sect.  3.1. Similarly, 
the mesh for the entire study area, as shown in Fig. 2, has 
been constructed using a method similar to that described 
in Sect. 3.1. In this case we have used spatial barrier model 
implemented in recently introduced INLAspacetime R pack-
age (Krainski et al. 2023). This implementation considers 
the cgeneric computational approach that is useful to imple-
ment new models with INLA. This adaptation leads to a 
substantial reduction in computation time compared to the 
original implementation using R-INLA. The barrierModel.
define function is used to define the model object. The bar-
rier object is depicted in the left panel of Fig. 4, where the 
grey area denotes the physical barrier, and the white area 
represents the road buffer polygons where spatial depen-
dence is analyzed. Points in red indicate the locations of 
traffic accidents used as event locations in the model. The 
triangulation will be created using a barrier model, in which 
the buffered road polygon serves as the normal terrain and 
areas without roads serve as physical barriers. The result-
ing mesh, with the polygon surrounding the barrier (in blue) 
along with the event locations (in red) are displayed in the 
right panel of Fig. 4.

As mentioned in Sect. 3.1, our approach involves aggre-
gating event counts at the centroids of individual road seg-
ments. By using Poisson regression models and adopting a 

All parameters associated to log-precisions are assigned 
inverse Gamma distributions with parameters equal to 1 and 
0.00005. The default prior distributions for all parameters in 
R-INLA were selected based on commonly used priors in 
previous studies (Martins et al. 2013; Blangiardo and Cam-
eletti 2015; Rue et al. 2017; Moraga 2020). We report that 
our results are robust against other alternative priors, as we 
run several cases with different priors obtaining the same 
results.

To compute the joint posterior distribution of the model 
parameters, we use an INLA-SPDE method, as introduced 
by Lindgren et al. (2011). SPDE consists in representing 
a continuous spatial process, such a Gaussian field (GF), 
using a discretely indexed spatial random process such as 
a Gaussian Markov random field (GMRF). In particular, 
the spatial random process represented by S (.) explicitly 
denote dependence on the spatial field, follows a zero-mean 
Gaussian process with Matérn covariance function (Matérn 
1960) represented as:

Cov (S (xi) , S (xj)) = σ2

2ν−1Γ (ν)
(κ ∥xi − xj∥)ν Kν (κ ∥xi − xj∥)

where Kν (.)  is the modified Bessel function of second kind, 
Γ is a gamma function and ν > 0 and κ > 0 are the smooth-
ness and scaling parameters, respectively. INLA approach 
constructs a Matérn SPDE model, with spatial range r and 
standard deviation parameter σ.
The parameterized model we follow is of the form:

(
κ2 − ∆

)(α/2) (τS) = W on Rd

where ∆ =
d∑

i=1

∂2

∂x2
i

 is the Laplacian, α = (ν + d/2)  is the 

smoothness parameter, τ  is inversely proportional to σ, W  
is Gaussian white noise and κ > 0 is the scale parameter, 
related to range r, defined as the distance at which the spa-
tial correlation becomes negligible. For each ν, we have 
r =

√
8ν/κ, with r corresponding to the distance where the 

spatial correlation is close to 0.1. Note that we have d = 2 
for a two-dimensional process, and we fix ν = 1, so that 
α = 2 in this case (Blangiardo and Cameletti 2015). Next, 
to interpolate discrete event locations to estimate a con-
tinuous process in space we have used the SPDE network 
mesh as depicted in the right panel of Fig. 3. The projection 
matrix is generated using the centroids of individual road 
segments and triangulations in the mesh. Bakka et al. (2018) 
suggest that the range value should be determined based on 
the spatial distribution of events in the study area. In the 
current study, due to the proximity of accident locations we 
have decided to use a prior P (r < 0.01) = 0.01, meaning 
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standard deviation. ∇ is equal to 
(

∂
∂x , ∂

∂y

)
 and W is Gauss-

ian white noise. In contrast to stationary spatial effects, this 
method implies the creation of a GMRF at a local level, con-
sisting of two governing equations, one for the normal area 
(buffered road polygon) and the other for the barrier area 
(areas without roads). The spatial effect prior is determined 
by two unknown hyperparameters, namely the standard 
deviation (σu) and the range in the normal area (r), while 
the range in the barrier area (rb) is maintained at a fixed, 
low value. Therefore, the system in Eq. 3 and 4 represents 
a form of local averaging, with dependence on nearby val-
ues. This approach ensures that when two points are sepa-
rated by physical barriers, the small range in the barrier area 
prevents local averaging, forcing dependency to focus on 
movement around the barrier through local averaging in the 
buffered road polygon area. The system of differential equa-
tions in Eq. 3 and 4 can be solved by constructing a Delau-
nay triangulation of the study area (as shown in Fig. 4) and 
applying the finite element method, as described in Bakka 
et al. (2019). For the two hyperparameters in the model 
that define the covariance structure of u (s), PC priors were 
assigned following the parametrization outlined in Simpson 
et al. (2017) and Fuglstad et al. (2019).

3.3  Whittle-Matérn fields on linear networks

Previous subsection on explicit network triangulation and 
ongoing research on barrier models for complex land struc-
tures have highlighted issues related to boundary effects, 
including the creation of artifact spatial dependencies on 
the boundary. In standard meshes, boundaries are typically 
outside the spatial domain of interest, allowing for identifi-
cation and elimination of these dependencies. However, in 
more complex meshes like network triangulation or barrier 
models, boundaries lie within the spatial domain, making 
it challenging to identify and eliminate these dependencies. 
A comprehensive analysis of boundary effects is presented 
in Sect. 4. However, a different approximation is needed in 

hierarchical Bayesian spatial model that accounts for barri-
ers, we can model traffic accidents on individual road seg-
ments. Our response variable is the aggregate number of 
minor injuries recorded per day for each individual section 
of road. Following it, log-risk in Eq. 1 can be modified to:

log (ρi) = β0 + Ziβi + u (si) + ∈i� (2)

Here, β0 corresponds to the intercept, Zi represents the 
spatial covariates mentioned in Sect.  2 and ∈i stands for 
an unstructured zero mean Gaussian random effect and log 
Gamma precision parameters 0.5 and 0.01, defined as PC 
priors (Simpson et al. 2017). We assigned default priors for 
all fixed-effect parameters to minimize their impact on the 
posterior distribution. u (s) is a non-stationary spatial ran-
dom effect. Bakka et al. (2019) in their proposal suggested 
using a finite element method which is based on the SPDE 
approach. The proposed method involves a system of two 
SPDEs, where one is applied to the barrier region and the 
other to the rest of the area. The system of stochastic dif-
ferential equations in question has a solution that exhibits a 
non-stationary spatial effect, represented as u (s). The sys-
tem can be mathematically modeled as a set of stochastic 
differential equations, which provide a continuous weak 
solution to the estimation problem:

u − ∆ · r2
b
8

∆u = rb

√
π

2
σuW, on Ωb� (3)

and

u − ∆ · r2

8
∆u = r

√
π

2
σuW, on Ωn� (4)

where u (s) is the spatial effect, Ωb the barrier area and Ωn is 
the remaining area and their disjoint union gives the whole 
study area Ω. Ranges for the barrier and remaining areas 
are represented by r and rb respectively. Σu is the marginal 

Fig. 4  Barrier object with event locations highlighted as red points (left) and Mesh with barrier object and event locations (right)
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edges. For example, the network in Fig.  5 does not have 
Euclidean edges as there are vertices which have multiple 
edges connecting them. This means that it is not clear that 
an isotropic model with a Matérn covariance (Eq. 5) is well-
defined, even if ν ≤ 1/2. Due to these constraints, Bolin et 
al. (2024a) take a different approach and focus on creating 
a Gaussian random field u on a compact metric graph Γ as a 
solution to a SPDE

(
κ2 − ∆

)α/2 (τu) = W, onΓ� (6)

where the parameter α is defined as α = ν + 1/2, linking 
the smoothness parameter ν from the Matérn covariance 
function to the SPDE framework. The operator ∆ denotes 
the Laplacian equipped with suitable boundary conditions in 
the vertices. The term τu indicates a transformation applied 
to the field u, which may involve scaling or other modifica-
tions relevant to the specific application and W is Gauss-
ian white noise (Bolin et al. 2023b). The proposed models, 
known as Whittle-Matérn fields, represent a logical progres-
sion from Gaussian fields with Matérn covariance functions 
in Euclidean spaces to the more complex non-Euclidean 
metric graph environment (Bolin et al. 2023b, 2024a). Bolin 
et al. (2023b) have shown in their proposed methodology 
that for α ∈ N, when these fields exhibit Markov properties, 
it is possible to conduct exact likelihood-based inference and 
spatial prediction with high computational efficiency. This 
progress significantly enhances the practicality of employ-
ing Whittle-Matérn fields in statistical applications, even 
when working with large datasets, eliminating the require-
ment for approximations such as finite element method. 
As the model is directly defined on the roads, it removes 
the aforementioned boundary effects of the previous mod-
els. Furthermore, both the barrier model and the network 
triangulation models treat the lanes in different directions 
of a road as a single road, which removes the possibility 
that the modeled quantity may be very different in the two 

which the INLA-SPDE approximation does not cause these 
fictitious spatial dependencies.

Literature shows statistical models are required to be 
defined on linear networks, such as connected river or street 
networks (Baddeley et al. 2017; Cronie et al. 2020). In such 
cases, it is necessary to define a model using a metric on 
the network rather than the Euclidean distance between 
points. However, constructing Gaussian fields over linear 
networks, or more generally on metric graphs, presents a 
challenge. This is due to the difficulty of finding flexible 
classes of functions that are positive definite when a non-
Euclidean metric is used (Bolin et al. 2025, 2024b). In a 
specific type of metric graph with Euclidean edges, Anderes 
et al. (2020) demonstrated that, for graphs with Euclidean 
edges, it is possible to define a valid Gaussian field by using 
a Matérn covariance function:

r (s, t) = σ2

2ν−1Γ (ν)
(κd (s, t))ν Kν (κd (s, t))� (5)

where r (s, t) represents the covariance between points s 
and t, and σ2 denotes the variance of the Gaussian field, 
indicating the scale of variability. The parameter v controls 
the smoothness of the process, constrained to (0 < ν ≤ 1/2
). The limitation of ν ≤ 1/2 means that we cannot use this 
approach to create differentiable Gaussian processes on 
metric graphs, even if they have Euclidean edges (Bolin 
et al. 2024a). The gamma function Γ (ν) normalizes the 
covariance, while k serves as a scale parameter influencing 
the covariance’s decay with distance. The resistance met-
ric d (s, t) quantifies the distance between points, and Kν 
is the modified Bessel function of the second kind, ensur-
ing the mathematical validity of the covariance structure. 
In their recent work, Bolin et al. (2025) demonstrated that 
no Gaussian random fields exist on general metric graphs 
that possess both isotropic and Markov properties. Further, 
large graphs based on traffic networks rarely have Euclidean 

Fig. 5  Metric graph structure gener-
ated using road networks of the 
study area
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minor injuries have a value of 1, ranging from a minimum 
of 0 to a maximum of 12.

It is important to note that we have aggregated the num-
ber of minor injuries for different time instances at the same 
location and considered it as a single vertex. Thus, in this 
model and also in the previous two models (mentioned in 
Sect. 3.1 and Sect. 3.2) no temporal covariates are consid-
ered. In the following step, we generated the INLA model 
object using the graph_spde function. Subsequently, we 
created the data object employing the graph_data_spde 
function. In the final step, utilizing the R-INLA framework, 
we constructed the formula object and set up the inla.stack 
object. Consistent with Sect. 3.1, we assume that given the 
relative risk, ρi, the observed event count follows a Pois-
son distribution, as described in Eq. 1. Finally, we fitted the 
model within the R-INLA framework.

4  Results and discussion

In this section, we present the results of the comparative 
analysis of the three methodologies outlined in Sect. 3. The 
evaluation was conducted using the same dataset, allowing 
for a direct comparison of the performance of these distinct 
modeling approaches. It is essential to highlight that tem-
poral covariates are not incorporated into any of the model-
ing procedures. For both network mesh model and barrier 
model, we executed batteries of similar models based on the 
argument values to create SPDE triangulation. The default 
prior distributions for all parameters in R-INLA are selected 
based on commonly used priors in previous studies (Rue et 
al. 2017; Moraga 2020). Our results indicate that our find-
ings are robust against alternative priors, as we ran several 
cases with different priors and obtained the same results. 

directions. This is rarely the case if quantities such as traffic 
intensity or traffic speed are modelled. However, this prob-
lem can be completely avoided if the Whittle-Matérn fields 
are used as the model can be defined on the individual lanes, 
as there is no need for buffer regions. For a detailed descrip-
tion of the methodology, please refer to the works of (Bolin 
et al., 2023b, 2024a, 2025).
In the current study, we have implemented the proposed 
methodology using the recently introduced R package Met-
ricGraph (Bolin et al. 2023c). We have used the same traffic 
accident dataset of Barcelona city spanning from January 
2010 to December 2019 reported in Sect. 2. We focused on 
the number of minor injuries as the response variable for our 
modeling process. To employ a graph model, we first con-
verted the dataset into a graph data structure that is compat-
ible with the model. In this structure, we have represented 
individual accident locations, start and end points of road 
segments, and intersecting points of road segments as nodes 
or vertices, while the connecting road segments for the 
nodes are represented as edges. Initially, we employed the 
function metric_grap$new on the road network shape files 
containing 2058 road segments to generate the metric graph 
object. Figure 5 illustrates the resulting metric graph, con-
sisting of 1288 vertices and 2050 edges. In the subsequent 
phase, to incorporate the traffic accident data into the metric 
graph, we utilized the function add_observations.

During this procedure, we included all the relevant 
covariates and the response variable (minor injuries) at the 
exact locations of the traffic accidents along the road net-
work. Figure 6 displays the metric graph with 11067 indi-
vidual traffic accident locations along with their respective 
counts of minor injuries, represented by a color scale. As 
outlined in Sect. 2, the majority, approximately 74.76%, of 

Fig. 6  Metric graph with observations of the traffic accident locations as nodes and road networks as edges
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other two models is very small, suggesting that they have 
very similar performance in terms of fitting the data. Finally, 
the CPO values for all three models are close to each other, 
indicating that they all have similar predictive performance. 
Additionally, it is important to note that the metric graph 
model has the shortest execution time among the three mod-
els, taking only 9.6 s. The network mesh model, on the other 
hand, requires the longest time at 21.2 s. The barrier model 
falls in between, taking 16.1 s. This indicates that the met-
ric graph model is not only more accurate but also more 
efficient in terms of computation compared to the other two 
models. In summary, the metric graph model has the best 
performance according to both DIC and WAIC, while all 
three models have similar predictive performance according 
to CPO. These results suggest that the metric graph model is 
the best model among the three fitted models for describing 
the data as well as computational efficiency.

While comparing the significance of the fixed effects for 
the three modeling techniques, we have observed that the 
covariates included in all models do not exhibit a statisti-
cally significant influence on the outcome. Moreover, the 
Appendix includes marginal posterior distributions of model 
hyperparameters for three different models: network mesh 
model in Fig. 7, barrier model in Fig. 8, and metric graph 
model in Fig. 9. The spatial range values for each model are 
reported as follows: 0.0523 km (equivalent to 52.3 m) for 
the network mesh model, 0.0183 km (equivalent to 18.3 m) 
for the barrier model, and 0.0648 km (equivalent to 64.8 m) 
for the graph model.

It is worth mentioning that, while modeling random spa-
tial events on linear networks by using SPDE triangulation 
precisely on linear network, it is important to carefully con-
sider the potential limitations and trade-offs associated with 
this approach. The barrier model, while generally easy to 
implement and adept at handling sparse data and complex 

In the case of the metric graph model, we executed several 
models with different log-prior probability density for the 
model parameters and ultimately selected the best fitted 
model. We assessed the performance of the models from 
the three different approaches using deviance information 
criterion (DIC) and the Watanabe–Akaike information crite-
rion (WAIC), balancing model accuracy against complexity 
(Spiegelhalter et al. 2002). We have used conditional pre-
dictive ordinate (CPO) value (Gelfand et al. 1992) which 
also acts as a selection measure; smaller value of CPO indi-
cates a better prediction quality of the model. Execution 
time for each modeling approach has also been reported as 
a measure of comparison. In Table 1, we report the selected 
models with the lowest DIC, WAIC, CPO, and execution 
time for each of the three categories from their respective 
battery of models.

Analyzing the DIC values, it is evident that the met-
ric graph model stands out with the lowest DIC value 
(16059.86), while the network mesh and barrier models are 
similar with DIC values of 23390.17 and 23364.32, respec-
tively. A lower DIC value indicates a better fit, so we can 
conclude that the metric graph model is the best-fitted model 
among the three. Similarly, when examining the WAIC val-
ues, we noticed that the metric graph model has the lowest 
value (16051.75), again indicating that it is the best-fitted 
model. The difference between the WAIC values of the 

Table 1  DIC, WAIC and CPO values of fitted models
Network mesh 
model

Barrier model 
(INLA spacetime)

Metric 
graph 
model

DIC 23390.17 23364.32 16059.86
WAIC 23382.56 23353.28 16051.75
CPO 0.3252899 0.3252616 0.3257345
Execution time 
(Secs.)

21.2 16.1 9.6

Fig. 7  Marginal posterior distributions of network mesh model hyperparameters: θ1 (left) and θ2 (right)
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networks. The model results in the current study also estab-
lish this fact.

On the other hand, the Whittle-Matérn fields approach 
is predicated on several key assumptions that are essential 
for effectively modeling spatial processes, particularly in 
the context of boundary effects. The Whittle-Matérn fields 
do not have boundary effects in the same sense because the 
model is defined directly on the network. The only possibil-
ity for having a boundary effect is if a partial network is 
modelled, where some vertices of degree 1 are introduced as 
a result. In this case, the vertex conditions of these vertices 
are adjusted to mitigate the impact of these effects on the 
spatial model (Bolin et al. 2023b). Specifically, boundary 
effects arise when certain vertices of degree 1 do not repre-
sent actual endpoints of the network but are instead artifacts 

physical barriers, was not originally intended for applica-
tion to linear networks. Despite this, our study explores the 
use of the barrier model as an alternative methodology in 
this context. However, while using these two techniques for 
modeling spatial relationships have significant limitation 
in the form of boundary effects. These effects can result in 
biased estimates and prediction errors, particularly in prox-
imity to the boundary, if the mesh does not cover the entire 
domain. As a general rule, the variance near the boundary 
is inflated by a factor of two along straight boundaries and 
by a factor of four near right-angled corners (Lindgren et 
al. 2011; Lindgren and Rue 2015). The complex boundary 
region of the buffer road network with several right-angled 
corners makes the process critical. Thus, these two methods 
are not a good fit to handle spatial random events on linear 

Fig. 9  Marginal posterior distributions of graph model hyperparameters: θ1 (left) and θ2 (right)

 

Fig. 8  Marginal posterior distributions of barrier model hyperparameters: θ1 (left) and θ2 (right)
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Whittle-Matérn fields accurately capture spatial relation-
ships on the road network and avoid the drawbacks asso-
ciated with boundary effects. By using this dataset, which 
includes detailed traffic-accident records from the city of 
Barcelona over a ten-year period, we were able to directly 
compare the performance of these three models. The Whit-
tle-Matérn fields outperformed both the triangulation and 
barrier models, highlighting their suitability for analyzing 
spatial patterns on road networks.

The dataset was crucial in demonstrating that the non-
Euclidean nature of road networks requires a more special-
ized approach like the Whittle-Matérn fields. This result 
suggests that our proposed modeling approach can be a 
significant advancement in understanding road safety mea-
sures. It provides accurate predictions of accident-prone 
road segments and generates dynamic risk maps for the 
entire road network. These risk maps are valuable tools for 
decision-makers, allowing for more strategic planning and 
targeted interventions to reduce traffic collisions. Although 
controlling boundary effects remains a challenge in network 
triangulation methods, our study shows that the Whittle-
Matérn approach can overcome these limitations and offers 
a practical solution for improving road safety analysis.

On another note, this approach influences non-Euclidean 
distances to accurately represent the complex structure 
of river or stream networks, making it particularly suit-
able for environmental datasets. Stream data often exhibit 
unique spatial autocorrelation patterns due to the branch-
ing network structure, the connectivity between upstream 
and downstream sections, the directional flow of water, and 
variations in flow volume throughout the network (Peter-
son and Ver Hoef, 2010; Peterson et al. 2013; Larsen et al. 
2019; Peterson et al. 2024). In addition, stream networks are 
embedded within a spatial environment, which can further 
influence observations on the network. Traditional spatial 
statistical models, which rely on Euclidean distances, often 
fail to adequately describe these complex spatial dependen-
cies, as they do not account for the specific hydrological 
characteristics of stream systems. Therefore, the Whittle-
Matérn fields provide a natural alternative also in the case 
of river networks, as they are directly constructed on the 
network. Thus, similar to how we demonstrated approach 
by Bolin et al. (2023c) with road networks to analyze traf-
fic accidents, this methodology can be effectively applied 
to various environmental scenarios. It shows that using 
non-Euclidean metrics can improve predictions in environ-
mental management, especially for risk assessments related 
to flood modeling, pollution tracking, and groundwater-
surface water interactions (Bolin et al. 2023c). This will be 
investigated further in future work.

of partial observation. In these cases, the default choice of 
Kirchhoff vertex conditions (analogous to a Neumann con-
dition for vertices of degree 1) yield a higher marginal vari-
ance at these vertices.

To remove this effect, alternative vertex conditions can 
be applied. For example, for α = 1, Robin boundary condi-
tions (expressed as κu + u′ = 0) can be introduced at verti-
ces of degree 1, which ensures stationarity at the boundaries, 
as discussed by Daon and Stadler (2018). This adjustment 
allows the model to maintain a stationary variance at the 
boundary. Further, these corrections are not limited to α = 1 
but can be extended to higher values of α. The boundary 
correction's impact on the marginal variances can be signifi-
cant, as illustrated by a comparison of scenarios with and 
without the boundary correction, particularly for the case of 
α = 2 (Bolin et al. 2023b). These assumptions and boundary 
treatments are important considerations for Whittle-Matérn 
fields because the fields are inherently non-isotropic, which 
can be an advantage in many real-world applications. How-
ever, the influence of boundary conditions on non-stationar-
ity must be carefully considered to avoid undesirable effects 
on the model's performance when vertices are induced by 
partial network observation rather than actual network end-
points. Consequently, these corrections allow for more sta-
ble and reliable modeling of processes on metric graphs, as 
discussed in Bolin et al. 2023b, 2024a, 2025.

The proposed metric graph methodology by Bolin et al. 
(2024a) has two significant advantages. Firstly, it has Mar-
kov properties if α ∈ N, implying that the precision matri-
ces of the finite dimensional distributions of the process 
will be sparse, which simplifies the use of the model for big 
datasets without the need for finite element methods or other 
approximations. Secondly, the model is well-defined for any 
compact metric graph, not just the subclass with Euclidean 
edges. This approach extends Gaussian fields with Matérn 
covariance functions on Euclidean domains to non-Euclid-
ean metric graph settings (Bolin et al. 2024a). Addition-
ally, the recent introduction of the R package MetricGraph 
enables the efficient generation and manipulation of metric 
graphs (Bolin et al. 2023c). It further simplifies operations 
and visualizations of data on these graphs, as well as the 
generation of a diverse set of random fields and SPDE in 
these spaces. Importantly, the integration of R packages 
INLA and inlabru facilitates the application of Bayesian sta-
tistical models on metric graphs.

Accordingly, we report that, among the three explored 
modeling approaches, the Whittle-Matérn fields defined 
on compact metric graphs emerged as the most effective 
method. These fields represent a recent development in 
spatial modeling and provide a more natural extension of 
Gaussian processes to road networks, specifically adapted 
for non-Euclidean spaces. Unlike the previous methods, the 

1 3

1155



Stochastic Environmental Research and Risk Assessment (2025) 39:1143–1158

Appendix

For detailed implementation of SPDE network mesh model, 
please consult the GitHub repository at ​h​t​t​​p​s​:​/​​/​g​i​​t​h​u​​b​.​c​o​m​/​
S​o​m​G​i​t​h​u​b​-​S​o​t​o​n​/​s​p​d​e​-​n​e​t​w​o​r​k​-​m​e​s​h​​​​​. For guidance on the 
barrier model using the INLAspacetime package, visit the 
GitHub repository at ​h​t​t​​p​s​:​/​​/​e​l​​i​a​s​​k​r​a​​i​n​s​​k​i​.​g​​i​t​​h​u​b​.​i​o​/​I​N​L​A​s​
p​a​c​e​t​i​m​e​/​a​r​t​i​c​l​e​s​/​w​e​b​/​b​a​r​r​i​e​r​E​x​a​m​p​l​e​.​h​t​m​l​​​​​. Additionally, 
for the MetricGraph package, please refer to GitHub reposi-
tory at ​h​t​t​​p​s​:​/​​/​d​a​​v​i​d​​b​o​l​i​n​.​g​i​t​h​u​b​.​i​o​/​M​e​t​r​i​c​G​r​a​p​h​/​i​n​d​e​x​.​h​t​m​l​​​​​
. Figures 7, 8 and 9.
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5  Conclusion

The current study discusses the challenges of using INLA 
and traditional SPDE method in implementing Bayesian 
spatiotemporal modeling in complex linear networks. These 
challenges call for a comprehensive and novel approach 
to address them. This may involve improving the SPDE 
triangulation approach, especially for linear networks, or 
developing a generalized methodology to model spatial and 
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